Update TargetMachine.Options with function attributes before we start
to generate MIR instructions. This allows access to correct function
attributes via TargetMachine.Options (it used to access attributes of
the function that was translated first).
This affects some existing tests with "no-nans-fp-math" attribute.
Follow-up on D87456.
Differential Revision: https://reviews.llvm.org/D87511
I've amended the isLoadInvariantInLoop function to bail out for
scalable vectors for now since the invariant.start intrinsic is only
ever generated by the clang frontend for thread locals or struct
and class constructors, neither of which support sizeless types.
In addition, the intrinsic itself does not currently support the
concept of a scaled size, which makes it impossible to compare
the sizes of different scalable objects, e.g. <vscale x 32 x i8>
and <vscale x 16 x i8>.
Added new tests here:
Transforms/LICM/AArch64/sve-load-hoist.ll
Transforms/LICM/hoisting.ll
Differential Revision: https://reviews.llvm.org/D87227
kAllocBegMagic should be enough.
kAllocBegMagic is already set for the Secondary allocations.
kAllocBegMagic is good enough for the Primary, but it's even safer for
the Secondary allocator as all allocated block are from mmap.
Depends on D87646.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87647
Make it atomic.
Wrap it into class.
Set it late after chunk is initialized.
Reset it soon when the chunk is still valid.
Depends on D87645.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87646
Before D87643 they where used to optimize UsedSize(). Which was
called frequently from leak scanner.
It was also used for calls from QuarantineCallback
but we have heavy get_allocator().Deallocate call there anyway.
Depends on D87643.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87644
Now we have enough space in the ChunkHeader.
45 bit is enough for kMaxAllowedMallocSize.
Depends on D87642.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87643
Before this patch, the cmake disabled loadable modules when compiling
with Visual Studio. However, the reason for this is a limitation of the
Windows DLLs, thus this restriction should apply to any compiler for the
Windows platform, such as MinGW, Cygwin, icc, etc.
Differential Revision: https://reviews.llvm.org/D87524
The motivation for this is ld.lld --help targeting MinGW which
currently prints help for the ELF backend unless -m i386pe{,p} is
added. This confuses build systems that grep through linker help to
find supported flags.
This matches LD from Binutils which always prints help for MinGW
when configured to target it.
After this change, the backend can still be overridden to any
supported ELF/MinGW target by using correct -m <arch>.
Differential Revision: https://reviews.llvm.org/D87418
In addition to printing the individual fields, synthesize and
print the corresponding prolog for the unwind info (in reverse
order, to match how it's printed for non-packed unwind info).
Differential Revision: https://reviews.llvm.org/D87370
In the case of LTO, several DWARF units can be emitted in one section.
For an extremely large application, they may exceed the limit of 4GiB
for 32-bit offsets. As it is now possible to emit 64-bit debugging info,
the patch enables storing the larger offsets.
Differential Revision: https://reviews.llvm.org/D87026
The string pool is shared among several units in the case of LTO,
and it potentially can exceed the limit of 4GiB for an extremely
large application. As it is now possible to emit 64-bit debugging
info, the limitation can be removed.
Differential Revision: https://reviews.llvm.org/D87025
The patch fixes emitting flags and the debug_line_offset field in
the header, as well as the reference to the macro string for
a pre-standard GNU .debug_macro extension.
Differential Revision: https://reviews.llvm.org/D87024
The patch fixes emitting the unit length field in the header of
the table and offsets to the entry pool. Note that while the patch
changes the common method to emit offsets, in fact, nothing is changed
for Apple accelerator tables, because we do not yet support DWARF64 for
those targets.
Differential Revision: https://reviews.llvm.org/D87023
The patch fixes emitting the header of the table. The content is
independent of the DWARF format.
Differential Revision: https://reviews.llvm.org/D87022
The transition is done by using methods of AsmPrinter which
automatically emit values in compliance with the selected DWARF format.
Differential Revision: https://reviews.llvm.org/D87013
The patch fixes calculating the size of the table and emitting
the fields which depend on the DWARF format by using methods that
choose appropriate sizes automatically.
Differential Revision: https://reviews.llvm.org/D87012
The patch fixes emitting the offset to the type DIE. All other fields
are already fixed in previous patches.
Differential Revision: https://reviews.llvm.org/D87021
These two fixes are better to go together because llvm-dwarfdump is
unable to dump a table when another one is malformed.
Differential Revision: https://reviews.llvm.org/D87018
The patch uses a common method to determine the appropriate form for
the value of the attribute.
Differential Revision: https://reviews.llvm.org/D87016
This is mostly an NFC patch because the involved methods are used when
emitting DWO files, which is incompatible with DWARFv3, or for platforms
where DWARF64 is not supported yet.
Differential Revision: https://reviews.llvm.org/D87015
The patch also adds a method to choose an appropriate DWARF form
to represent section offsets according to the version and the format
of producing debug info.
Differential Revision: https://reviews.llvm.org/D87014
The patch adds a switch to enable emitting debug info in the 64-bit
DWARF format. Most emitter for sections will be updated in the subsequent
patches, whereas for .debug_line and .debug_frame the emitters are in
the MC library, which is already updated.
For now, the switch is enabled only for 64-bit ELF targets.
Differential Revision: https://reviews.llvm.org/D87011
DW_FORM_sec_offset and DW_FORM_strp imply values of different sizes with
DWARF32 and DWARF64. The patch fixes DIE value classes to use correct
sizes when emitting their values. For DIELocList it ensures that the
requested DWARF form matches the current DWARF format because that class
uses a method that selects the size automatically.
Differential Revision: https://reviews.llvm.org/D87009
These methods are used to emit values which are 32-bit in DWARF32 and
64-bit in DWARF64. The patch fixes them so that they choose the length
automatically, depending on the DWARF format set in the Context.
Differential Revision: https://reviews.llvm.org/D87008
When concatenating directory with filename in getFilenameByIndex, we
might end up with a path that contains extra dots. For example, if the
input is /path and ./example, we would return /path/./example. Run
sys::path::remove_dots on the output to eliminate unnecessary dots.
Differential Revision: https://reviews.llvm.org/D87657
Add a combiner helper that replaces G_UNMERGE where all the destination lanes
are dead except the first one with a G_TRUNC.
Differential Revision: https://reviews.llvm.org/D87174
The Fortran standard discusses BZ mode (treat blanks as zero digits)
explicitly in its effect on the editing of the digits prior to the
exponent part, but doesn't mention it in description of the
exponent part. Other compilers honor BZ mode in the exponent,
so we should do so too. So "1 e 1 " is 1.E11 in BZ mode.
Differential Revision: https://reviews.llvm.org/D87653
C-style /*comments*/ are removed during preprocessing directive
tokenization, but Fortran !comments need to be specifically
allowed.
Fixes LLVM bugzilla 47466.
Differential Revision: https://reviews.llvm.org/D87638