TypeIDAllocator enables the allocation of new TypeIDs at runtime,
that are unique during the lifetime of the allocator.
NonMovableTypeIDOwner is a class used to define a new TypeID for each instance
of a class, using the instance address. This class cannot be copied or moved.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104534
While testing LLVM 14.0.0 rc1 on Solaris, I ran into a compile failure:
from /var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp:22:
/usr/include/sys/types.h:103:16: error: conflicting declaration ‘typedef short int index_t’
103 | typedef short index_t;
| ^~~~~~~
In file included from
/var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp:17:
/var/llvm/llvm-14.0.0-rc1/rc1/llvm-project/mlir/include/mlir/ExecutionEngine/SparseTensorUtils.h:26:7:
note: previous declaration as ‘using index_t = uint64_t’
26 | using index_t = uint64_t;
| ^~~~~~~
The same issue had already occured in the past and fixed in D72619
<https://reviews.llvm.org/D72619>. More detailed explanation can also be
found there.
Tested on `amd64-pc-solaris2.11` and `sparcv9-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D119323
This makes getAliasingOpResult symmetric to getAliasingOpOperand. The previous implementation was confusing for users and implemented in such a way only because there are currently no bufferizable ops that have multiple aliasing OpResults.
Differential Revision: https://reviews.llvm.org/D119259
They used to be classes with a virtual `run` function. This was inconvenient because post analysis steps are stored in BufferizationOptions. Because of this design choice, BufferizationOptions were not copyable.
Differential Revision: https://reviews.llvm.org/D119258
Implements optional attribute or type parameters, including support for such parameters in the assembly format `struct` directive. Also implements optional groups.
Depends on D117971
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D118208
Add support for computing an overapproximation of the number of integer points
in a polyhedron. The returned result is actually the number of integer points
one gets by computing the "rational shadow" obtained by projecting out the
local IDs, finding the minimal axis-parallel hyperrectangular approximation
of the shadow, and returning the number of integer points in that. This does
not currently support symbols.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D119228
This makes it applicable to both ArrayAttr and its typed subclasses instead of
only the latter. There is no good reason why ArrayAttr shouldn't be
const-buildable while its typed subclasses are, this was likely just an
omission.
Depends On D119113
Reviewed By: rriddle, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D119114
FunctionPass has been deprecated in favor of OperationPass<FuncOp>
for a few weeks, and this commit finished the deprecation with deletion.
The only difference between the two is that FunctionPass filters out function
declarations. When updating references to FunctionPass, ensure that
the pass either can handle declarations or explicitly add in filtering.
See https://llvm.discourse.group/t/functionpass-deprecated-in-favor-of-operationpass-funcop
Differential Revision: https://reviews.llvm.org/D118735
These have generally been replaced by better ODS functionality, and do not
need to be explicitly provided anymore.
Differential Revision: https://reviews.llvm.org/D119065
Currently if an operation wants a C++ implemented parser/printer, it specifies inline
code blocks. This is quite problematic for various reasons, e.g. it requires defining
C++ inside of Tablegen which is discouraged when possible, but mainly because
nearly all usages simply forward to static functions (e.g. `static void parseSomeOp(...)`)
with users devising their own standards for how these are defined.
This commit adds support for a `hasCustomAssemblyFormat` bit field that specifies if
a C++ parser/printer is needed, and when set to 1 declares the parse/print methods for
operations to override. For migration purposes, the existing behavior is untouched. Upstream
usages will be replaced in a followup to keep this patch focused on the new implementation.
Differential Revision: https://reviews.llvm.org/D119054
Add the class MultiAffineFunction which represents functions whose domain is an
IntegerPolyhedron and which produce an output given by a tuple of affine
expressions in the IntegerPolyhedron's ids.
Also add support for piece-wise MultiAffineFunctions, which are defined on a
union of IntegerPolyhedrons, and may have different output affine expressions
on each IntegerPolyhedron. Thus the function is affine on each individual
IntegerPolyhedron piece in the domain.
This is part of a series of patches leading up to parametric integer programming.
Depends on D118778.
Reviewed By: Groverkss
Differential Revision: https://reviews.llvm.org/D118779
* Implement `FlatAffineConstraints::getConstantBound(EQ)`.
* Inject a simpler constraint for loops that have at most 1 iteration.
* Taking into account constant EQ bounds of FlatAffineConstraint dims/symbols during canonicalization of the resulting affine map in `canonicalizeMinMaxOp`.
Differential Revision: https://reviews.llvm.org/D119153
This is both more efficient and more ergonomic to use, as inverting a
bit vector is trivial while inverting a set is annoying.
Sadly this leaks into a bunch of APIs downstream, so adapt them as well.
This would be NFC, but there is an ordering dependency in MemRefOps's
computeMemRefRankReductionMask. This is now deterministic, previously it
was dependent on SmallDenseSet's unspecified iteration order.
Differential Revision: https://reviews.llvm.org/D119076
This patch makes IntegerPolyhedron and derived classes use of getters to access
IntegerPolyhedron space information (`numIds, numDims, numSymbols`) instead of
directly accessing them.
This patch makes it easier to change the underlying implementation of the way
identifiers are stored, making it easier to extend/modify existing implementation.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D118888
Adapt `tileConsumerAndFuseProducers` to return failure if the generated tile loop nest is empty since all tile sizes are zero. Additionally, fix `LinalgTileAndFuseTensorOpsPattern` to return success if the pattern applied successfully.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D118878
Simple pass that changes all symbols to private unless symbol is excluded (and
in which case there is no change to symbol's visibility).
Differential Revision: https://reviews.llvm.org/D118752
I see a lot of array sorting in stack traces of our compiler, canonicalizer traverses this list every time it builds a pattern set, and it gets expensive very quickly.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D118937
This is completely unused upstream, and does not really have well defined semantics
on what this is supposed to do/how this fits into the ecosystem. Given that, as part of
splitting up the standard dialect it's best to just remove this behavior, instead of try
to awkwardly fit it somewhere upstream. Downstream users are encouraged to
define their own operations that clearly can define the semantics of this.
This also uncovered several lingering uses of ConstantOp that weren't
updated to use arith::ConstantOp, and worked during conversions because
the constant was removed/converted into something else before
verification.
See https://llvm.discourse.group/t/standard-dialect-the-final-chapter/ for more discussion.
Differential Revision: https://reviews.llvm.org/D118654
The Utils.cpp file in StandardOps essentially just contains utilities for interacting with arithmetic
operations, and at this point makes more sense as a utility file for the arithemtic dialect.
Differential Revision: https://reviews.llvm.org/D118280
This is part of the larger effort to split the standard dialect. This will also allow for pruning some
additional dependencies on Standard (done in a followup).
Differential Revision: https://reviews.llvm.org/D118202
Currently if an operation requires additional verification, it specifies an inline
code block (`let verifier = "blah"`). This is quite problematic for various reasons, e.g.
it requires defining C++ inside of Tablegen which is discouraged when possible, but mainly because
nearly all usages simply forward to a static function `static LogicalResult verify(SomeOp op)`.
This commit adds support for a `hasVerifier` bit field that specifies if an additional verifier
is needed, and when set to `1` declares a `LogicalResult verify()` method for operations to
override. For migration purposes, the existing behavior is untouched. Upstream usages will
be replaced in a followup to keep this patch focused on the hasVerifier implementation.
One main user facing change is that what was one `MyOp::verify` is now `MyOp::verifyInvariants`.
This better matches the name this method is called everywhere else, and also frees up `verify` for
the user defined additional verification. The `verify` function when generated now (for additional
verification) is private to the operation class, which should also help avoid accidental usages after
this switch.
Differential Revision: https://reviews.llvm.org/D118742
This CL supports adding dependency between traits verifiers and the
dependency will be checked statically.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D115135
Use `SmallVector` instead of `std::vector` in `getLocalRepr` function.
Also, fix the casing of a variable.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D118722