This is no-functional-change-intended (AFAIK, we can't
isolate this difference in a regression test).
That's because the callers should be setting the IRBuilder's
FMF field when creating the reduction and/or setting those
flags after creating. It doesn't make sense to override this
one flag alone.
This is part of a multi-step process to clean up the FMF
setting/propagation. See PR35538 for an example.
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93793
* Steps are scaled by `vscale`, a runtime value.
* Changes to circumvent the cost-model for now (temporary)
so that the cost-model can be implemented separately.
This can vectorize the following loop [1]:
void loop(int N, double *a, double *b) {
#pragma clang loop vectorize_width(4, scalable)
for (int i = 0; i < N; i++) {
a[i] = b[i] + 1.0;
}
}
[1] This source-level example is based on the pragma proposed
separately in D89031. This patch only implements the LLVM part.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D91077
For GC parseable element atomic memcpy/memmove we'll need to
shuffle statepoint arguments. Make it possible by storing the
arguments as Value *, not Use *.
This was broken by 16295d521e, when
instructions started being handled and not just constant
expressions. This was re-inserting an equivalent bitcast to the
original memcpy operand, which made a non-functional IR change on
every iteration.
This also fixes a secondary problem where it was inserting
addrspacecasts which may not have been legal (i.e. it changed the
source address space). Start visiting all pointer users and fail out
if we can't process them. Also start handling the relevant memory
intrinsic users. These cases can be dealt with by running
InferAddressSpaces separately.
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
Replace the `ident_t` handling in Clang with the methods offered by the
OMPIRBuilder. This cuts down on the clang code as well as the
differences between the two, making further transitions easier. Tests
have changed but there should not be a real functional change. The most
interesting difference is probably that we stop generating local ident_t
allocations for now and just use globals. Given that this happens only
with debug info, the location part of the `ident_t` is probably bigger
than the test anyway. As the location part is already a global, we can
avoid the allocation, memcpy, and store in favor of a constant global
that is slightly bigger. This can be revisited if there are
complications.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D80735
As discussed on D81500, this adds a more general ElementCount variant of the build helper and converts the (non-scalable) unsigned NumElts variant to use it internally.
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: thopre, yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
Assume bundle can have more than one entry with the same name,
but at least AlignmentFromAssumptionsPass::extractAlignmentInfo() uses
getOperandBundle("align"), which internally assumes that it isn't the
case, and happily crashes otherwise.
Minimal reduced reproducer: run `opt -alignment-from-assumptions` on
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
%0 = type { i64, %1*, i8*, i64, %2, i32, %3*, i8* }
%1 = type opaque
%2 = type { i8, i8, i16 }
%3 = type { i32, i32, i32, i32 }
; Function Attrs: nounwind
define i32 @f(%0* noalias nocapture readonly %arg, %0* noalias %arg1) local_unnamed_addr #0 {
bb:
call void @llvm.assume(i1 true) [ "align"(%0* %arg, i64 8), "align"(%0* %arg1, i64 8) ]
ret i32 0
}
; Function Attrs: nounwind willreturn
declare void @llvm.assume(i1) #1
attributes #0 = { nounwind "reciprocal-estimates"="none" }
attributes #1 = { nounwind willreturn }
This is what we'd have with -mllvm -enable-knowledge-retention
This reverts commit c95ffadb24.
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
Now that we have an operand based form for the GC arguments to a statepoint intrinsic, update RS4GC to use it and update tests to reflect. This is pretty straight forward. I nearly landed without review, but figured a second set of eyes didn't hurt.
Differential Revision: https://reviews.llvm.org/D81121
Continues from D80598.
The key point of the change is to default to using operand bundles instead of the inline length prefix argument lists for statepoint nodes. An important subtlety to note is that the presence of a bundle has semantic meaning, even if it is empty. As such, we need to make a somewhat deeper change to the interface than is first obvious.
Existing code treats statepoint deopt arguments and the deopt bundle operands differently during inlining. The former is ignored (resulting in caller state being dropped), the later is merged.
We can't preserve the old behaviour for calls with deopt fed to RS4GC and then inlining, but we can avoid the no-deopt case changing. At least in internal testing, that seem to be the important one. (I'd argue the "stop merging after RS4GC" behaviour for the former was always "unexpected", but that the behaviour for non-deopt calls actually make sense.)
Differential Revision: https://reviews.llvm.org/D80674
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77276
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
Summary:
24 March 2020: LLVM 10.0.0 is out.
I gathered all deprecated function introduced between 9 and 10 and cleaned them up so they will be removed from 11.
> git log -p -S LLVM_ATTRIBUTE_DEPRECATED llvmorg-9.0.0..llvmorg-10.0.0
Reviewers: courbet
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77409
Since D73835 we no longer need to define the whole IRBuilder
implementation in the header. This patch moves some of the larger
methods out of line, into the C++ file.
Differential Revision: https://reviews.llvm.org/D77332
Some IRBuilder methods that were originally defined on
IRBuilderBase do not respect custom IRBuilder inserters/folders,
because those were not accessible prior to D73835. Fix this by
making use of existing (and now accessible) IRBuilder methods,
which will handle inserters/folders correctly.
There are some changes in OpenMP and Instrumentation tests, where
bitcasts now get constant folded. I've also highlighted one
InstCombine test which now finishes in two rather than three
iterations, thanks to new instructions being inserted into the
worklist.
Differential Revision: https://reviews.llvm.org/D74787
Some IRBuilder methods that were originally defined on
IRBuilderBase do not respect custom IRBuilder inserters/folders,
because those were not accessible prior to D73835. Fix this by
making use of existing (and now accessible) IRBuilder methods,
which will handle inserters/folders correctly.
There are some changes in OpenMP tests, where bitcasts now get
constant folded. I've also highlighted one InstCombine test which
now finishes in two rather than three iterations, thanks to new
instructions being inserted into the worklist.
Differential Revision: https://reviews.llvm.org/D74787
Relative to the original commit, this fixes some warnings,
and is based on the deletion of the IRBuilder copy constructor
in D74693. The automatic copy constructor would no longer be
safe.
-----
Related llvm-dev thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/138951.html
This patch moves the IRBuilder from templating over the constant
folder and inserter towards making both of these virtual.
There are a couple of motivations for this:
1. It's not possible to share code between use-sites that use
different IRBuilder folders/inserters (short of templating the code
and moving it into headers).
2. Methods currently defined on IRBuilderBase (which is not templated)
do not use the custom inserter, resulting in subtle bugs (e.g.
incorrect InstCombine worklist management). It would be possible to
move those into the templated IRBuilder, but...
3. The vast majority of the IRBuilder implementation has to live
in the header, because it depends on the template arguments.
4. We have many unnecessary dependencies on IRBuilder.h,
because it is not easy to forward-declare. (Significant parts of
the backend depend on it via TargetLowering.h, for example.)
This patch addresses the issue by making the following changes:
* IRBuilderDefaultInserter::InsertHelper becomes virtual.
IRBuilderBase accepts a reference to it.
* IRBuilderFolder is introduced as a virtual base class. It is
implemented by ConstantFolder (default), NoFolder and TargetFolder.
IRBuilderBase has a reference to this as well.
* All the logic is moved from IRBuilder to IRBuilderBase. This means
that methods can in the future replace their IRBuilder<> & uses
(or other specific IRBuilder types) with IRBuilderBase & and thus
be usable with different IRBuilders.
* The IRBuilder class is now a thin wrapper around IRBuilderBase.
Essentially it only stores the folder and inserter and takes care
of constructing the base builder.
What this patch doesn't do, but should be simple followups after this change:
* Fixing use of the inserter for creation methods originally defined
on IRBuilderBase.
* Replacing IRBuilder<> uses in arguments with IRBuilderBase, where useful.
* Moving code from the IRBuilder header to the source file.
From the user perspective, these changes should be mostly transparent:
The only thing that consumers using a custom inserted may need to do is
inherit from IRBuilderDefaultInserter publicly and mark their InsertHelper
as public.
Differential Revision: https://reviews.llvm.org/D73835
Related llvm-dev thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/138951.html
This patch moves the IRBuilder from templating over the constant
folder and inserter towards making both of these virtual.
There are a couple of motivations for this:
1. It's not possible to share code between use-sites that use
different IRBuilder folders/inserters (short of templating the code
and moving it into headers).
2. Methods currently defined on IRBuilderBase (which is not templated)
do not use the custom inserter, resulting in subtle bugs (e.g.
incorrect InstCombine worklist management). It would be possible to
move those into the templated IRBuilder, but...
3. The vast majority of the IRBuilder implementation has to live
in the header, because it depends on the template arguments.
4. We have many unnecessary dependencies on IRBuilder.h,
because it is not easy to forward-declare. (Significant parts of
the backend depend on it via TargetLowering.h, for example.)
This patch addresses the issue by making the following changes:
* IRBuilderDefaultInserter::InsertHelper becomes virtual.
IRBuilderBase accepts a reference to it.
* IRBuilderFolder is introduced as a virtual base class. It is
implemented by ConstantFolder (default), NoFolder and TargetFolder.
IRBuilderBase has a reference to this as well.
* All the logic is moved from IRBuilder to IRBuilderBase. This means
that methods can in the future replace their IRBuilder<> & uses
(or other specific IRBuilder types) with IRBuilderBase & and thus
be usable with different IRBuilders.
* The IRBuilder class is now a thin wrapper around IRBuilderBase.
Essentially it only stores the folder and inserter and takes care
of constructing the base builder.
What this patch doesn't do, but should be simple followups after this change:
* Fixing use of the inserter for creation methods originally defined
on IRBuilderBase.
* Replacing IRBuilder<> uses in arguments with IRBuilderBase, where useful.
* Moving code from the IRBuilder header to the source file.
From the user perspective, these changes should be mostly transparent:
The only thing that consumers using a custom inserted may need to do is
inherit from IRBuilderDefaultInserter publicly and mark their InsertHelper
as public.
Differential Revision: https://reviews.llvm.org/D73835
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, nicolasvasilache
Subscribers: hiraditya, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73041
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.
For example:
; The LLVM LangRef specifies that the scalar result must equal the
; vector element type, but this is not checked/enforced by LLVM.
declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
This patch changes that into:
declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)
Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.
Reviewers: RKSimon, arsenm, rnk, greened, aemerson
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62996
llvm-svn: 363240
This patch changes how LLVM handles the accumulator/start value
in the reduction, by never ignoring it regardless of the presence of
fast-math flags on callsites. This change introduces the following
new intrinsics to replace the existing ones:
llvm.experimental.vector.reduce.fadd -> llvm.experimental.vector.reduce.v2.fadd
llvm.experimental.vector.reduce.fmul -> llvm.experimental.vector.reduce.v2.fmul
and adds functionality to auto-upgrade existing LLVM IR and bitcode.
Reviewers: RKSimon, greened, dmgreen, nikic, simoll, aemerson
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D60261
llvm-svn: 363035
The scalar start/accumulator value of the fadd- and fmul reduction
should match the result type of the reduction, as well as the vector
element-type of the input vector. Although this was not explicitly
specified in the LangRef, it was taken for granted in code implementing
the reductions. The patch also fixes the LangRef by adding this
constraint.
Reviewed By: aemerson, nikic
Differential Revision: https://reviews.llvm.org/D60260
llvm-svn: 361133
This cleans up all InvokeInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57171
llvm-svn: 352910