RISCVMCCodeEmitter::expandAddTPRel asserts that the second operand must be
x4/tp. As we are not currently checking this in the RISCVAsmParser, the assert
is easy to trigger due to wrong assembly input.
This patch does a late check of this constraint.
An alternative could be using a singleton register class for x4/tp similar to
the current one for sp. Unfortunately it does not result in a good diagnostic.
Because add is an overloaded mnemonic, if no matching is possible, the
diagnostic of the first failing alternative seems to be used as the diagnostic
itself. This means that this case the %tprel_add is diagnosed as an invalid
operand (because the real add instruction only has 3 operands).
Differential Revision: https://reviews.llvm.org/D60528
llvm-svn: 358183
This patch adds support in the MC layer for parsing and assembling the
4-operand add instruction needed for TLS addressing. This also involves
parsing the %tprel_hi, %tprel_lo and %tprel_add operand modifiers.
Differential Revision: https://reviews.llvm.org/D55341
llvm-svn: 357698
This patch allows symbols appended with @plt to parse and assemble with the
R_RISCV_CALL_PLT relocation.
Differential Revision: https://reviews.llvm.org/D55335
Patch by Lewis Revill.
llvm-svn: 357470
This patch replaces the addition of VK_RISCV_CALL in RISCVMCCodeEmitter by
creating the RISCVMCExpr when tail/call are parsed, or in the codegen case
when the callee symbols are created.
This required adding a new CallSymbol operand to allow only adding
VK_RISCV_CALL to tail/call instructions.
This patch will allow further expansion of parsing and codegen to easily
include PLT symbols which must generate the R_RISCV_CALL_PLT relocation.
Differential Revision: https://reviews.llvm.org/D55560
Patch by Lewis Revill.
llvm-svn: 357396
The RISC-V ISA defines RV32E as an alternative "base" instruction set
encoding, that differs from RV32I by having only 16 rather than 32 registers.
This patch adds basic definitions for RV32E as well as MC layer support
(assembling, disassembling) and tests. The only supported ABI on RV32E is
ILP32E.
Add a new RISCVFeatures::validate() helper to RISCVUtils which can be called
from codegen or MC layer libraries to validate the combination of TargetTriple
and FeatureBitSet. Other targets have similar checks (e.g. erroring if SPE is
enabled on PPC64 or oddspreg + o32 ABI on Mips), but they either duplicate the
checks (Mips), or fail to check for both codegen and MC codepaths (PPC).
Codegen for the ILP32E ABI support and RV32E codegen are left for a future
patch/patches.
Differential Revision: https://reviews.llvm.org/D59470
llvm-svn: 356744
RISCVAsmParser::ParseRegister is called from AsmParser::parseRegisterOrNumber,
which in turn is called when processing CFI directives. The RISC-V
implementation wasn't setting RegNo, and so was incorrect. This patch address
that and adds cfi directive tests that demonstrate the fix. A follow-up patch
will factor out the register parsing logic shared between ParseRegister and
parseRegister.
llvm-svn: 356329
Summary:
Those pseudo-instructions are making load/store instructions able to
load/store from/to a symbol, and its always using PC-relative addressing
to generating a symbol address.
Reviewers: asb, apazos, rogfer01, jrtc27
Differential Revision: https://reviews.llvm.org/D50496
llvm-svn: 354430
This patch also introduces the emitAuipcInstPair helper, which is then used
for both emitLoadAddress and emitLoadLocalAddress.
Differential Revision: https://reviews.llvm.org/D55325
Patch by James Clarke.
llvm-svn: 354111
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This further improves compatibility with GNU as, allowing input such as the
following to be assembled:
.equ CONST, 0x123456
li a0, CONST
addi a0, a0, %lo(CONST)
.equ CONST, 1
slli a0, a0, CONST
Note that we don't have perfect compatibility with gas, as it will avoid
emitting a relocation in this case:
addi a0, a0, %lo(CONST2)
.equ CONST2, 0x123456
Thanks to Shiva Chen for suggesting a better way to approach this during review.
Differential Revision: https://reviews.llvm.org/D52298
llvm-svn: 350831
This adds support in the RISCVAsmParser the storing of Subtarget feature bits to a stack so that they can be pushed/popped to enable/disable multiple features at once.
Differential Revision: https://reviews.llvm.org/D46424
Patch by Lewis Revill.
llvm-svn: 347774
Logic to load 32-bit and 64-bit immediates is currently present in
RISCVAsmParser::emitLoadImm in order to support the li pseudoinstruction. With
the introduction of RV64 codegen, there is a greater benefit of sharing
immediate materialisation logic between the MC layer and codegen. The
generateInstSeq helper allows this by producing a vector of simple structs
representing the chosen instructions. This can then be consumed in the MC
layer to produce MCInsts or at instruction selection time to produce
appropriate SelectionDAG node. Sharing this logic means that both the li
pseudoinstruction and codegen can benefit from future optimisations, and
that this logic can be used for materialising constants during RV64 codegen.
This patch does contain a behaviour change: addi will now be produced on RV64
when no lui is necessary to materialise the constant. In that case addiw takes
x0 as the source register, so is semantically identical to addi.
Differential Revision: https://reviews.llvm.org/D52961
llvm-svn: 346937
This extends the .option support from D45864 to enable/disable the relax
feature flag from D44886
During parsing of the relax/norelax directives, the RISCV::FeatureRelax
feature bits of the SubtargetInfo stored in the AsmParser are updated
appropriately to reflect whether relaxation is currently enabled in the
parser. When an instruction is parsed, the parser checks if relaxation is
currently enabled and if so, gets a handle to the AsmBackend and sets the
ForceRelocs flag. The AsmBackend uses a combination of the original
RISCV::FeatureRelax feature bits set by e.g -mattr=+/-relax and the
ForceRelocs flag to determine whether to emit relocations for symbol and
branch diffs. Diff relocations should therefore only not be emitted if the
relax flag was not set on the command line and no instruction was ever parsed
in a section with relaxation enabled to ensure correct diffs are emitted.
Differential Revision: https://reviews.llvm.org/D46423
Patch by Lewis Revill.
llvm-svn: 346655
This is a trivial refactoring that I'm committing now as it makes a patch I'm
about to post for review easier to follow. There is some overlap between
evaluateConstantImm and addExpr in RISCVAsmParser. This patch allows
evaluateConstantImm to be reused from addExpr to remove this overlap. The
benefit will be greater when a future patch adds extra code to allows
immediates to be evaluated from constant symbols (e.g. `.equ CONST, 0x1234`).
No functional change intended.
llvm-svn: 342641
Examples such as `jal a3`, `j a3` and `jal a3, a3` are accepted by gas
but rejected by LLVM MC. This patch rectifies this. I introduce
RISCVAsmParser::parseJALOffset to ensure that symbol names that coincide with
register names can safely be parsed. This is made a somewhat fiddly due to the
single-operand alias form (see the comment in parseJALOffset for more info).
Differential Revision: https://reviews.llvm.org/D52029
llvm-svn: 342629
This allows the hard-coded shouldForceImmediate logic to be removed because
the generated MatchOperandParserImpl makes use of the current context (i.e.
the current mnemonic) to determine parsing behaviour, and so won't first try
to parse a register before parsing a symbol name.
No functional change is intended. gas accepts immediate arguments for call,
tail and lla. This patch doesn't address this discrepancy.
Differential Revision: https://reviews.llvm.org/D51733
llvm-svn: 342488
addi a0, a0, foo and lw a0, foo(a0) and similar are now rejected. An explicit
%lo and %pcrel_lo modifier is required. This matches gas behaviour.
llvm-svn: 342487
Reject bare symbols and accept only %pcrel_hi(sym) for auipc and %hi(sym) for
lui. Also test valid operand modifiers in rv32i-valid.s.
Note this is slightly stricter than gas, which will accept either %pcrel_hi or
%hi for both lui and auipc.
Differential Revision: https://reviews.llvm.org/D51731
llvm-svn: 342486
Summary:
Fixed assertions due to invalid fixup when encoding compressed instructions
(c.addi, c.addiw, c.li, c.andi) with bare symbols with/without modifiers.
This matches GAS behavior as well.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer
for the RISC-V assembly language.
Reviewers: asb
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D52005
llvm-svn: 342160
Summary:
RISCVAsmParser needs to handle the case the error message is of specific type, other than the generic Match_InvalidOperand, and the corresponding
operand is missing.
This bug was uncovered by a LLVM MC Assembler Protocol Buffer Fuzzer for the RISC-V assembly language.
Reviewers: asb
Reviewed By: asb
Subscribers: llvm-commits, jocewei, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX
Differential Revision: https://reviews.llvm.org/D50790
llvm-svn: 341104
This is a fix for r339314.
MCInstBuilder uses the named parameter idiom and an 'operator MCInst&' to ease
the creation of MCInsts. As the object of MCInstBuilder owns the MCInst is
manipulating, the lifetime of the MCInst is bound to that of MCInstBuilder.
In r339314 I bound a reference to the MCInst in an initializer. The
temporary of MCInstBuilder (and also its MCInst) is destroyed at the end of
the declaration leading to a dangling reference.
Fix this by using MCInstBuilder inside an argument of a function call.
Temporaries in function calls are destroyed in the enclosing full expression,
so the the reference to MCInst is still valid when emitToStreamer executes.
llvm-svn: 339654
This pseudo-instruction is similar to la but uses PC-relative addressing
unconditionally. This is, la is only different to lla when using -fPIC. This
pseudo-instruction seems often forgotten in several specs but it is definitely
mentioned in binutils opcodes/riscv-opc.c. The semantics are defined both in
page 37 of the "RISC-V Reader" book but also in function macro found in
gas/config/tc-riscv.c.
This is a very first step towards adding PIC support for Linux in the RISC-V
backend.
The lla pseudo-instruction expands to a sequence of auipc + addi with a couple
of pc-rel relocations where the second points to the first one. This is
described in
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses
For now, this patch only introduces support of that pseudo instruction at the
assembler parser.
Differential Revision: https://reviews.llvm.org/D49661
llvm-svn: 339314
The implementation follows the MIPS backend and expands the pseudo instruction
directly during asm parsing. As the result, only real MC instructions are
emitted to the MCStreamer. The actual expansion to real instructions is
similar to the expansion performed by the GNU Assembler.
This patch supersedes D41949.
Differential Revision: https://reviews.llvm.org/D46118
Patch by Mario Werner.
llvm-svn: 334203
Summary:
This patch implements MC support for tail psuedo instruction.
A follow-up patch implements the codegen support as well as handling of the indirect tail pseudo instruction.
Reviewers: asb, apazos
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, jordy.potman.lists, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, llvm-commits
Differential Revision: https://reviews.llvm.org/D46221
llvm-svn: 332634
These directives are recognised by gas. Support is added through the use of
addAliasForDirective.
Also match RISC-V gcc in preferring .half and .word for 16-bit and 32-bit data
directives.
llvm-svn: 332574
These directives allow the 'C' (compressed) extension to be enabled/disabled
within a single file.
Differential Revision: https://reviews.llvm.org/D45864
Patch by Kito Cheng
llvm-svn: 332107
Previously `call zero`, `call f0` etc would fail. This leads to compilation
failures if building programs that define functions with those names and using
-save-temps.
llvm-svn: 330846
To do this:
1. Add PseudoCALLIndirct to match indirect function call.
2. Add PseudoCALL to support parsing and print pseudo `call` in assembly
3. Expand PseudoCALL to the following form with R_RISCV_CALL relocation type
while encoding:
auipc ra, func
jalr ra, ra, 0
If we expand PseudoCALL before emitting assembly, we will see auipc and jalr
pair when compile with -S. It's hard for assembly parser to parsing this
pair and identify it's semantic is function call and then insert R_RISCV_CALL
relocation type. Although we could insert R_RISCV_PCREL_HI20 and
R_RISCV_PCREL_LO12_I relocation types instead of R_RISCV_CALL.
Due to RISCV relocation design, auipc and jalr pair only can relax to jal with
R_RISCV_CALL + R_RISCV_RELAX relocation types.
We expand PseudoCALL as late as encoding(RISCVMCCodeEmitter) instead of before
emitting assembly(RISCVAsmPrinter) because we want to preserve call
pseudoinstruction in assembly code. It's more readable and assembly parser
could identify call assembly and insert R_RISCV_CALL relocation type.
Differential Revision: https://reviews.llvm.org/D45859
llvm-svn: 330826
Reverts rL330224, while issues with the C extension and missed common
subexpression elimination opportunities are addressed. Neither of these issues
are visible in current RISC-V backend unit tests, which clearly need
expanding.
llvm-svn: 330281
The implementation follows the MIPS backend and expands the
pseudo instruction directly during asm parsing. As the result, only
real MC instructions are emitted to the MCStreamer. Additionally,
PseudoLI instructions are emitted during codegen. The actual
expansion to real instructions is performed during MI to MC lowering
and is similar to the expansion performed by the GNU Assembler.
Differential Revision: https://reviews.llvm.org/D41949
Patch by Mario Werner.
llvm-svn: 330224
Summary:
This patch implements a tablegen-driven Instruction Compression
mechanism for generating RISCV compressed instructions
(C Extension) from the expanded instruction form.
This tablegen backend processes CompressPat declarations in a
td file and generates all the compile-time and runtime checks
required to validate the declarations, validate the input
operands and generate correct instructions.
The checks include validating register operands, immediate
operands, fixed register operands and fixed immediate operands.
Example:
class CompressPat<dag input, dag output> {
dag Input = input;
dag Output = output;
list<Predicate> Predicates = [];
}
let Predicates = [HasStdExtC] in {
def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs1, GPRNoX0:$rs2),
(C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>;
}
The result is an auto-generated header file
'RISCVGenCompressEmitter.inc' which exports two functions for
compressing/uncompressing MCInst instructions, plus
some helper functions:
bool compressInst(MCInst& OutInst, const MCInst &MI,
const MCSubtargetInfo &STI,
MCContext &Context);
bool uncompressInst(MCInst& OutInst, const MCInst &MI,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI);
The clients that include this auto-generated header file and
invoke these functions can compress an instruction before emitting
it, in the target-specific ASM or ELF streamer, or can uncompress
an instruction before printing it, when the expanded instruction
format aliases is favored.
The following clients were added to implement compression\uncompression
for RISCV:
1) RISCVAsmParser::MatchAndEmitInstruction:
Inserted a call to compressInst() to compresses instructions
parsed by llvm-mc coming from an ASM input.
2) RISCVAsmPrinter::EmitInstruction:
Inserted a call to compressInst() to compress instructions that
were lowered from Machine Instructions (MachineInstr).
3) RVInstPrinter::printInst:
Inserted a call to uncompressInst() to print the expanded
version of the instruction instead of the compressed one (e.g,
add s0, s0, a5 instead of c.add s0, a5) when -riscv-no-aliases
is not passed.
This patch squashes D45119, D42780 and D41932. It was reviewed in smaller patches by
asb, efriedma, apazos and mgrang.
Reviewers: asb, efriedma, apazos, llvm-commits, sabuasal
Reviewed By: sabuasal
Subscribers: mgorny, eraman, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, niosHD, kito-cheng, shiva0217, zzheng
Differential Revision: https://reviews.llvm.org/D45385
llvm-svn: 329455
Implement c.lui immediate constraint to [1, 31] and [0xfffe0, 0xfffff].
The RISC-V ISA describes the constraint as [1, 63], with that value
being loaded in to bits 17-12 of the destination register and sign extended
from bit 17. Therefore, this 6-bit immediate can represent values in the
ranges [1, 31] and [0xfffe0, 0xfffff].
Differential Revision: https://reviews.llvm.org/D42834
llvm-svn: 325792
c.slli/c.srli/c.srai allow a 5-bit shift in RV32C and a 6-bit shift in RV64C.
This patch adds uimmlog2xlennonzero to reflect this constraint as well as
tests.
Differential Revision: https://reviews.llvm.org/D41216
Patch by Shiva Chen.
llvm-svn: 320799
As the FPR32 and FPR64 registers have the same names, use
validateTargetOperandClass in RISCVAsmParser to coerce a parsed FPR32 to an
FPR64 when necessary. The rest of this patch is very similar to the RV32F
patch.
Differential Revision: https://reviews.llvm.org/D39895
llvm-svn: 320023
The most interesting part of this patch is probably the handling of
rounding mode arguments. Sadly, the RISC-V assembler handles floating point
rounding modes as a special "argument" when it would be more consistent to
handle them like the atomics, opcode suffixes. This patch supports parsing
this optional parameter, using InstAlias to allow parsing these floating point
instructions when no rounding mode is specified.
Differential Revision: https://reviews.llvm.org/D39893
llvm-svn: 320020