One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
This reapplies the previously reverted patch with additional include
order fixes for non-modular builds of LLDB.
Differential Revision: https://reviews.llvm.org/D103575
Currently, Loop strengh reduce is not handling loops with scalable stride very well.
Take loop vectorized with scalable vector type <vscale x 8 x i16> for instance,
(refer to test/CodeGen/AArch64/sve-lsr-scaled-index-addressing-mode.ll added).
Memory accesses are incremented by "16*vscale", while induction variable is incremented
by "8*vscale". The scaling factor "2" needs to be extracted to build candidate formula
i.e., "reg(%in) + 2*reg({0,+,(8 * %vscale)}". So that addrec register reg({0,+,(8*vscale)})
can be reused among Address and ICmpZero LSRUses to enable optimal solution selection.
This patch allow LSR getExactSDiv to recognize special cases like "C1*X*Y /s C2*X*Y",
and pull out "C1 /s C2" as scaling factor whenever possible. Without this change, LSR
is missing candidate formula with proper scaled factor to leverage target scaled-index
addressing mode.
Note: This patch doesn't fully fix AArch64 isLegalAddressingMode for scalable
vector. But allow simple valid scale to pass through.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D103939
One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
This reapplies the previsously reverted patch with additional MachO.h
macro #undefs.
Differential Revision: https://reviews.llvm.org/D103575
Iff we have `SCALAR_TO_VECTOR` (and we demand it's only defined 0'th element),
and said scalar was produced by `EXTRACT_VECTOR_ELT` from the 0'th element
of some vector, then we can just continue traversal into said source vector.
This comes up in X86 vector uniform shift lowering.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D104250
The parser of generic op did not recognize the output from mlir-opt when there
are multiple outputs. One would wrap the result types with braces, and one would
not. The patch makes the behavior the same.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D104256
The code in fixLdsBranchVmemWARHazard looks for patterns of a vmem/lds
access followed by a branch, followed by an lds/vmem access.
The handling of the hazard requires an arbitrary number of instructions
to process. In the worst case where a function has a vmem access, but no lds
accesses, all instructions are examined only to conclude that the hazard
cannot occur.
Add the pre-processing stage which detects if there is both lds and vmem
present in the function and only then does the more costly search.
This patch significantly improves compilation time in the cases the hazard
cannot happen. In one pathological case I looked at IsHazardInst is needlesly
called 88.6 milions times.
The numbers could also be improved by introducing a map around the
inner calls to ::getWaitStatesSince in fixLdsBranchVmemWARHazard, but
nothing will beat not running fixLdsBranchVmemWARHazard at all in the cases
detected by shouldRunLdsBranchVmemWARHazardFixup().
Differential Revision: https://reviews.llvm.org/D104219
Summary:
A -Wunused-parameter warning was introduced by patch rG7f0244afa828 [libc++abi] NFC: adding a new parameter base to functions for calculating… (authored by xingxue). The unused parameter base will be used in a follow-on patch D101298. This patch is to avoid the warning before D101298 is landed.
Reviewers: ldionne, sfertile, compnerd, libc++abi
Reviewed by: ldionne
Differential Revision: https://reviews.llvm.org/D104235
Added support for CXXRewrittenBinaryOperator as a condition in ranged
for loops. This is a new kind of expression, need to extend support for
C++20 constructs.
It fixes PR49970: range-based for compilation fails for libstdc++ vector
with -std=c++20.
Differential Revision: https://reviews.llvm.org/D104240
This changes the pass manager to not rerun the verifier when a pass says it
didn't change anything or after an OpToOpPassAdaptor, since neither of those
cases need verification (and if the pass lied, then there will be much larger
semantic problems than will be caught by the verifier).
This maintains behavior in EXPENSIVE_CHECKS mode.
Differential Revision: https://reviews.llvm.org/D104243
Interface patterns are unique in that they get added to every operation that also implements that interface, given that they aren't tied to individual operations. When the same interface pattern gets added to multiple operations (such as the current behavior with Linalg), an reference to each of these patterns is added to every op (meaning that an operation will now have N references to effectively the same pattern). This revision fixes this problematic behavior in Linalg, and can bring upwards of a 25% reduction in compile time in Linalg based workloads.
Differential Revision: https://reviews.llvm.org/D104160
Emphasize that this is basically an attempt to remove
``PointerType::getElementType`` and ``Type::getPointerElementType()``.
Add a couple more subtasks.
Differential Revision: https://reviews.llvm.org/D104151
It assumes that PointerType will keep having an optional pointee type,
but we'd like to remove the pointee type in PointerType at some point.
I feel like the current implementation could be simplified anyway,
although perhaps I'm underestimating the amount of work needed
throughout BitcodeReader.
We will still need a side table to keep track of pointee types. This
will be reimplemented at some point.
This is essentially a revert of a4771e9d (which doesn't look like it was
reviewed anyway).
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D103135
The parser code assumes building with C++ compiler and asserts when using clang (not clang++) on C file. I made the code dependent on input language. This shows up for amdgpu target.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D103899
This change provides the option to merge and aggregate cold context by the last k frames instead of context-less name. By default K = 1 means the context-less one.
This is for better perf tuning. The more selective merging and trimming will rely on llvm-profgen's preinliner.
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D104131
This patch adds support for loading and storing unaligned vectors via an
equivalently-sized i8 vector type, which has support in the RVV
specification for byte-aligned access.
This offers a more optimal path for handling of unaligned fixed-length
vector accesses, which are currently scalarized. It also prevents
crashing when `LegalizeDAG` sees an unaligned scalable-vector load/store
operation.
Future work could be to investigate loading/storing via the largest
vector element type for the given alignment, in case that would be more
optimal on hardware. For instance, a 4-byte-aligned nxv2i64 vector load
could loaded as nxv4i32 instead of as nxv16i8.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D104032
Move buffer unit test from Runtime directory to RuntimeGtest
directory and use GTest. Test coverage is only maintained.
Differential Revision: https://reviews.llvm.org/D102335
Reviewed By: awarzynski, klausler
This changes the outer verification loop to not recurse into
IsolatedFromAbove operations - instead return them up to a place
where a parallel for loop can process them all in parallel. This
also changes Dominance checking to happen on IsolatedFromAbove
chunks of the region tree, which makes it easy to fold operation
and dominance verification into a single simple parallel regime.
This speeds up firtool in CIRCT from ~40s to 31s on a large
testcase in -verify-each mode (the default). The .fir parser and
module passes in particular benefit from this - FModule passes
(roughly analogous to function passes) were already running the
verifier in parallel as part of the pass manager. This allows
the whole-module passes to verify their enclosed functions /
FModules in parallel.
-verify-each mode is still faster (26.3s on the same testcase),
but we do expect the verifier to take *some* time.
Differential Revision: https://reviews.llvm.org/D104207
We canonicalized to these select patterns (poison-safe logic)
with D101191, so we need to reduce 'not' ops when possible
as we would with 'and'/'or' instructions.
This is shown in a secondary example in:
https://llvm.org/PR50389https://alive2.llvm.org/ce/z/BvsESh
Currently the irreducible cycles in the loops are ignored. The
irreducible cycle may loop infinitely in
irreducible_subloop_no_mustprogress, which is allowed and the loop
should not be removed.
Discussed in D103382.
As Eli mentioned post-commit in D103378, the result of the freeze may
still be out-of-range according to Alive2. So for now, just limit the
transform to indices that are non-poison.
6e5628354e regressed the Windows build as
the return type no longer matched in both branches for the return value
type deduction. This uses a bit more compiler magic to deal with that.
Given a vecreduce_add node, detect the below pattern and convert it to the node
sequence with UABDL, [S|U]ADB and UADDLP.
i32 vecreduce_add(
v16i32 abs(
v16i32 sub(
v16i32 [sign|zero]_extend(v16i8 a), v16i32 [sign|zero]_extend(v16i8 b))))
=================>
i32 vecreduce_add(
v4i32 UADDLP(
v8i16 add(
v8i16 zext(
v8i8 [S|U]ABD low8:v16i8 a, low8:v16i8 b
v8i16 zext(
v8i8 [S|U]ABD high8:v16i8 a, high8:v16i8 b
Differential Revision: https://reviews.llvm.org/D104042
This change caused build errors related to move-only __block variables,
see discussion on https://reviews.llvm.org/D99696
> This expands NRVO propagation for more cases:
>
> Parse analysis improvement:
> * Lambdas and Blocks with dependent return type can have their variables
> marked as NRVO Candidates.
>
> Variable instantiation improvements:
> * Fixes crash when instantiating NRVO variables in Blocks.
> * Functions, Lambdas, and Blocks which have auto return type have their
> variables' NRVO status propagated. For Blocks with non-auto return type,
> as a limitation, this propagation does not consider the actual return
> type.
>
> This also implements exclusion of VarDecls which are references to
> dependent types.
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99696
This also reverts the follow-on change which was hard to tease apart
form the one above:
> "[clang] Implement P2266 Simpler implicit move"
>
> This Implements [[http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2266r1.html|P2266 Simpler implicit move]].
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99005
This reverts commits 1e50c3d785 and
bf20631782.
This change adds `AutomaticAllocationScope` to the
memref.alloca_scope op. Additionally, it also clarifies
that alloca_scope is is conceptually a passthrough operation.
Reviewed By: ftynse, bondhugula
Differential Revision: https://reviews.llvm.org/D104227
Revision https://reviews.llvm.org/D104190 renamed MemRefDataFlow -> AffineScalarReplacement. After this rename, mlir failed to build. With this change, all of clang, mlir, and flang build and test correctly.
Differential Revision: https://reviews.llvm.org/D104223