target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
* Escaped # and < characters in Doxygen comments as needed;
* Removed a Doxygen comment in HeaderSearch.cpp that was redundant with
the corresponding comment in the header file.
llvm-svn: 158776
* Retain comments in the AST
* Serialize/deserialize comments
* Find comments attached to a certain Decl
* Expose raw comment text and SourceRange via libclang
llvm-svn: 158771
The original r158700 caused crashes in the gcc test suite,
g++.abi/vtable3a.C among others. It also caused failures in the libc++
test suite.
llvm-svn: 158749
r158085 added some logic to track predefined declarations. The main reason we
had predefined declarations in the input was because the __builtin_va_list
declarations were injected into the preprocessor input. As of r158592 we
explicitly build the __builtin_va_list declarations. Therefore the predefined
decl tracking is no longer needed.
llvm-svn: 158732
Note that this is mostly a structural patch that handles the change from the old
spelling style to the new one. One consequence of this is that all AT_foo_bar
enum values have changed to not be based off of the first spelling, but rather
off of the class name, so they are now AT_FooBar and the like (a straw poll on
IRC showed support for this). Apologies for code churn.
Most attributes have GNU spellings as a temporary solution until everything else
is sorted out (such as a Keyword spelling, which I intend to add if someone else
doesn't beat me to it). This is definitely a WIP.
I've also killed BaseCheckAttr since it was unused, and I had to go through
every attribute anyway.
llvm-svn: 158700
* Removed docs for Lexer::makeFileCharRange from Lexer.cpp, as they're in
the header file;
* Reworked the documentation for SkipBlockComment so that it doesn't confuse
Doxygen's comment parsing;
* Added another summary with \brief markup.
llvm-svn: 158618
1. Teach Lexer that pragma lexers are like macro expansions at EOF.
2. Treat pragmas like #define/#undef when printing.
3. If we just printed a directive, add a newline before any more tokens.
(4. Miscellaneous cleanup in PrintPreprocessedOutput.cpp)
PR10594 and <rdar://problem/11562490> (two separate related problems)
llvm-svn: 158571
modes. For languages other than C99/C11, this isn't quite a conforming
extension, and for C++11, it breaks some reasonable code containing
user-defined literals.
In languages which don't officially have hexfloats, pare back this extension
to only apply in cases where the token starts 0x and does not contain an
underscore. The extension is still not quite conforming, but it's a lot closer
now.
llvm-svn: 158487
override whether headers are system headers by checking for prefixes of the
header name specified in the #include directive.
This allows warnings to be disabled for third-party code which is found in
specific subdirectories of include paths.
llvm-svn: 158418
The preprocessor's handling of diagnostic push/pops is stateful, so
encountering pragmas during a re-parse causes problems. HTMLRewrite
already filters out normal # directives including #pragma, so it's
clear it's not expected to be interpreting pragmas in this mode.
This fix adds a flag to Preprocessor to explicitly disable pragmas.
The "right" fix might be to separate pragma lexing from pragma
parsing so that we can throw away pragmas like we do preprocessor
directives, but right now it's important to get the fix in.
Note that this has nothing to do with the "hack" of re-using the
input preprocessor in HTMLRewrite. Even if we someday copy the
preprocessor instead of re-using it, the copy would (and should) include
the diagnostic level tables and have the same problems.
llvm-svn: 158214
This was a problem for people who write 'return(result);'
Also fix ARCMT's corresponding code, though there's no test case for this
because implicit casts like this are rejected by the migrator for being
ambiguous, and explicit casts have no problem.
<rdar://problem/11577346>
llvm-svn: 158130
In standard C since C89, a 'translation-unit' is syntactically defined to have
at least one "external-declaration", which is either a decl or a function
definition. In Clang the latter gives us a declaration as well.
The tricky bit about this warning is that our predefines can contain external
declarations (__builtin_va_list and the 128-bit integer types). Therefore our
AST parser now makes sure we have at least one declaration that doesn't come
from the predefines buffer.
Also, remove bogus warning about empty source files. This doesn't catch source
files that only contain comments, and never fired anyway because of our
predefines.
PR12665 and <rdar://problem/9165548>
llvm-svn: 158085
so we can destroy it even if it was constructed with "DelayInitialization = true",
and we didn't end up calling Preprocessor::Initialize.
Fixes crashes in rdar://11558355
llvm-svn: 157892
- Developers of system frameworks need a way for their framework to be treated as a "system framework" during development. Otherwise, they are unable to properly test how their framework behaves when installed because of the semantic changes (in warning behavior) applied to system frameworks.
llvm-svn: 154105
cached during the non-cached lex, otherwise we are going to drop them.
Fixes a bogus "_Pragma takes a parenthesized string literal" error when
expanding consecutive _Pragmas in a macro argument.
Part of rdar://11168596
llvm-svn: 153994
If we are pre-expanding a macro argument don't actually "activate"
the pragma at that point, activate the pragma whenever we encounter
it again in the token stream.
This ensures that we will activate it in the correct location
or that we will ignore it if it never enters the token stream, e.g:
\#define EMPTY(x)
\#define INACTIVE(x) EMPTY(x)
INACTIVE(_Pragma("clang diagnostic ignored \"-Wconversion\""))
This also fixes the crash in rdar://11168596.
llvm-svn: 153959
"#include MACRO(STUFF)".
-As an inclusion position for the included file, use the file location of the file where it
was included but *after* the macro expansions. We want the macro expansions to be considered
as before-in-translation-unit for everything in the included file.
-In the preprocessing record take into account that only inclusion directives can be encountered
as "out-of-order" (by comparing the start of the range which for inclusions is the hash location)
and use binary search if there is an extreme number of macro expansions in the include directive.
Fixes rdar://11111779
llvm-svn: 153527
Enable incremental parsing by the Preprocessor,
where more code can be provided after an EOF.
It mainly prevents the tearing down of the topmost lexer.
To be used like this:
PP.enableIncrementalProcessing();
while (getMoreSource()) {
while (Parser.ParseTopLevelDecl(ADecl)) {...}
}
PP.enableIncrementalProcessing(false);
llvm-svn: 152914
basic source character set in C++98. Add -Wc++98-compat diagnostics for same in
literals in C++11. Extend such support to cover string literals as well as
character literals, and mark N2170 as done.
This seems too minor to warrant a release note to me. Let me know if you disagree.
llvm-svn: 152444
first codepoint! Also, don't reject empty raw string literals for spurious
"encoding" issues. Also, don't rely on undefined behavior in ConvertUTF.c.
llvm-svn: 152344
starting with an underscore is ill-formed.
Since this rule rejects programs that were using <inttypes.h>'s macros, recover
from this error by treating the ud-suffix as a separate preprocessing-token,
with a DefaultError ExtWarn. The approach of treating such cases as two tokens
is under discussion for standardization, but is in any case a conforming
extension and allows existing codebases to keep building while the committee
makes up its mind.
Reword the warning on the definition of literal operators not starting with
underscores (which are, strangely, legal) to more explicitly state that such
operators can't be called by literals. Remove the special-case diagnostic for
hexfloats, since it was both triggering in the wrong cases and incorrect.
llvm-svn: 152287
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
grammar requires a string-literal and not a user-defined-string-literal. The
two constructs are still represented by the same TokenKind, in order to prevent
a combinatorial explosion of different kinds of token. A flag on Token tracks
whether a ud-suffix is present, in order to prevent clients from needing to look
at the token's spelling.
llvm-svn: 152098
Introduce PreprocessingRecord::rangeIntersectsConditionalDirective() which returns
true if a given range intersects with a conditional directive block.
llvm-svn: 152018
-Add location parameter for the directives callbacks
-Skip callbacks if the directive is inside a skipped range.
-Make sure the directive callbacks are invoked in source order.
llvm-svn: 152017
Fixes PR10606.
I'm not sure if this is the best way to go about it, but
I locally enabled this code path without the msext conditional,
and all tests pass, except for test/Preprocessor/cxx_oper_keyword.cpp
which explicitly checks that operator keywords can't be redefined.
I also parsed chromium/win with a clang with and without this patch.
It introduced no new errors, but removes 43 existing errors.
llvm-svn: 151768
that provides the behavior of the C++11 library trait
std::is_trivially_constructible<T, Args...>, which can't be
implemented purely as a library.
Since __is_trivially_constructible can have zero or more arguments, I
needed to add Yet Another Type Trait Expression Class, this one
handling arbitrary arguments. The next step will be to migrate
UnaryTypeTrait and BinaryTypeTrait over to this new, more general
TypeTrait class.
Fixes the Clang side of <rdar://problem/10895483> / PR12038.
llvm-svn: 151352
This seems to negatively affect compile time onsome ObjC tests
(which use a lot of partial diagnostics I assume). I have to come
up with a way to keep them inline without including Diagnostic.h
everywhere. Now adding a new diagnostic requires a full rebuild
of e.g. the static analyzer which doesn't even use those diagnostics.
This reverts commit 6496bd10dc3a6d5e3266348f08b6e35f8184bc99.
This reverts commit 7af19b817ba964ac560b50c1ed6183235f699789.
This reverts commit fdd15602a42bbe26185978ef1e17019f6d969aa7.
This reverts commit 00bd44d5677783527d7517c1ffe45e4d75a0f56f.
This reverts commit ef9b60ffed980864a8db26ad30344be429e58ff5.
llvm-svn: 150006
- Move the offending methods out of line and fix transitive includers.
- This required changing an enum in the PPCallback API into an unsigned.
llvm-svn: 149782
into using non-absolute system includes (<foo>)...
... and introduce another hack that is simultaneously more heineous
and more effective. We whitelist Clang-supplied headers that augment
or override system headers (such as float.h, stdarg.h, and
tgmath.h). For these headers, Clang does not provide a module
mapping. Instead, a system-supplied module map can refer to these
headers in a system module, and Clang will look both in its own
include directory and wherever the system-supplied module map
suggests, then adds either or both headers. The end result is that
Clang-supplied headers get merged into the system-supplied module for
the C standard library.
As a drive-by, fix up a few dependencies in the _Builtin_instrinsics
module.
llvm-svn: 149611
__has_builtin
in an empty file, as we were overwriting the EOF token. Overwriting an arbitrary token
never seems like a good idea in the error case. This fixes a bug reported on the GCC
list :)
llvm-svn: 149397
for getting the name of the module file, unifying the code for
searching for a module with a given name (into lookupModule()) and
separating out the mapping to a module file (into
getModuleFileName()). No functionality change.
llvm-svn: 149197
single attribute ("system") that allows us to mark a module as being a
"system" module. Each of the headers that makes up a system module is
considered to be a system header, so that we (for example) suppress
warnings there.
If a module is being inferred for a framework, and that framework
directory is within a system frameworks directory, infer it as a
system framework.
llvm-svn: 149143
when it actually has changed (and not, e.g., when we've simply attached a
deserialized macro definition). Good for ~1.5% reduction in module
file size, mostly in the identifier table.
llvm-svn: 148808
Updates ProcessUCNExcape() for C++. C++11 allows UCNs in character
and string literals that represent control characters and basic
source characters. Also C++03 allows UCNs that refer to surrogate
codepoints.
UTF-8 sequences in character literals are now handled as single
c-chars.
Added error for multiple characters in Unicode character literals.
Added errors for when a the execution charset encoding of a c-char
cannot be represented as a single code unit in the associated
character type. Note that for the purposes of this error the asso-
ciated character type for a narrow character literal is char, not
int, even though in C narrow character literals have type int.
llvm-svn: 148389
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
re-computed rather than the variables be re-used just after the assert.
Just use the variables since we have them already. Fixes an unused
variable warning.
Also fix an 80-column violation.
llvm-svn: 148212
framework is actually a subframework within a top-level framework. If
so, only infer a module for the top-level framework and then dig out
the appropriate submodule.
This helps us cope with an amusing subframeworks anti-pattern, where
one uses -F <framework>/Frameworks to get direct include access to the
subframeworks of a framework (which otherwise would not be
permitted).
llvm-svn: 148148
include stack to find the first file that is known to be part of the
module. This copes with situations where the module map doesn't
completely specify all of the headers that are involved in the module,
which can come up when there are very strange #include_next chains
(e.g., with weird compiler/stdlib headers like stdarg.h or float.h).
llvm-svn: 147662
in the module map. This provides a bit more predictability for the
user, as well as eliminating the need to sort the submodules when
serializing them.
llvm-svn: 147564
any language variant), and restrict __has_feature(objc_modules) to
mean that we also have the Objective-C @import syntax. I anticipate
__has_feature(cxx_modules) and/or __has_feature(c_modules) for when we
nail down the module syntax for C/C++.
llvm-svn: 147548
modules. This leaves us without an explicit syntax for importing
modules in C/C++, because such a syntax needs to be discussed
first. In Objective-C/Objective-C++, the @import syntax is used to
import modules.
Note that, under -fmodules, C/C++ programs can import modules via the
#include mechanism when a module map is in place for that header. This
allows us to work with modules in C/C++ without committing to a syntax.
llvm-svn: 147467
features needed for a particular module to be available. This allows
mixed-language modules, where certain headers only work under some
language variants (e.g., in C++, std.tuple might only be available in
C++11 mode).
llvm-svn: 147387
found within that umbrella directory that were not actually included
by the umbrella header. They should either be referenced in the module
map or included by the umbrella header.
llvm-svn: 147207
hitting a submodule that was never actually created, e.g., because
that header wasn't parsed. In such cases, complain (because the
module's umbrella headers don't cover everything) and fall back to
including the header.
Later, we'll add a warning at module-build time to catch all such
cases. However, this fallback is important to eliminate assertions in
the ASTWriter when this happens.
llvm-svn: 146933
#__include_macros) in the arguments of a function-style macro. Directives in the
arguments of such macros have undefined behaviour, and GCC does not correctly
support these cases. In some situations, this can lead to better diagnostics.
llvm-svn: 146765
all of the headers below that particular directory. Use umbrella
directories as a clean way to deal with (1) directories/frameworks
that don't have an umbrella header, but don't want to enumerate all of
their headers, and (2) PrivateHeaders, which we never want to
enumerate and want to keep separate from the main umbrella header.
This also eliminates a little more of the "magic" for private headers,
and frameworks in general.
llvm-svn: 146235
part of HeaderSearch. This function just normalizes filenames for use
inside of a synthetic include directive, but it is used in both the
Frontend and Serialization libraries so it needs a common home.
llvm-svn: 146227
umbrella headers in the sense that all of the headers within that
directory (and eventually its subdirectories) are considered to be
part of the module with that umbrella directory. However, unlike
umbrella headers, which are expected to include all of the headers
within their subdirectories, Clang will automatically include all of
the headers it finds in the named subdirectory.
The intent here is to allow a module map to trivially turn a
subdirectory into a module, where the module's structure can mimic the
directory structure.
llvm-svn: 146165
a modifier for a header declarartion, e.g.,
umbrella header "headername"
Collapse the umbrella-handling code in the parser into the
header-handling code, so we don't duplicate the header-search logic.
llvm-svn: 146159
header to also support umbrella directories. The umbrella directory
for an umbrella header is the directory in which the umbrella header
resides.
No functionality change yet, but it's coming.
llvm-svn: 146158
when we load a module map (module.map) from a directory, also load a
private module map (module_private.map) for that directory, if
present. That private module map can inject a new submodule that
captures private headers.
llvm-svn: 146012
most specific (sub)module based on the actual file we find, rather
than always importing the top-level module. This means
that #include'ing <Foo/Blah.h> should give us the submodule Foo.Blah.
llvm-svn: 145942
frameworks). A submodule can now be labeled as a "framework", and
header search will look into the appropriate Headers/PrivateHeaders
subdirectories for named headers.
llvm-svn: 145941
to re-export anything that it imports. This opt-in feature makes a
module behave more like a header, because it can be used to re-export
the transitive closure of a (sub)module's dependencies.
llvm-svn: 145811
within module maps, which will (eventually) be used to re-export a
module from another module. There are still some pieces missing,
however.
llvm-svn: 145665
(sub)module, all of the names may be hidden, just the macro names may
be exposed (for example, after the preprocessor has seen the import of
the module but the parser has not), or all of the names may be
exposed. Importing a module makes its names, and the names in any of
its non-explicit submodules, visible to name lookup (transitively).
This commit only introduces the notion of name visible and marks
modules and submodules as visible when they are imported. The actual
name-hiding logic in the AST reader will follow (along with test cases).
llvm-svn: 145586
library, since modules cut across all of the libraries. Rename
serialization::Module to serialization::ModuleFile to side-step the
annoying naming conflict. Prune a bunch of ModuleMap.h includes that
are no longer needed (most files only needed the Module type).
llvm-svn: 145538
callback client to suggest an alternative search path and after we
complain when the included file can't be found. The former can't be
tested in isolation, the latter doesn't actually matter (because we
won't make a module suggestion if no header is available). However,
the flow is better this way.
llvm-svn: 145502
submodules. This information will eventually be used for name hiding
when dealing with submodules. For now, we only use it to ensure that
the module "key" returned when loading a module will always be a
module (rather than occasionally being a FileEntry).
llvm-svn: 145497
return the module itself (in the module map) rather than returning the
umbrella header used to build the module. While doing this, make sure
that we're inferring modules for frameworks to build that module.
llvm-svn: 145310
into a module. This module can either be loaded from a module map in
the framework directory (which isn't quite working yet) or inferred
from an umbrella header (which does work, and replaces the existing
hack).
llvm-svn: 144877
the umbrella header's directory and its subdirectories are part of the
module (that's why it's an umbrella). Make sure that these headers are
considered to be part of the module for lookup purposes.
llvm-svn: 144859
the module is described in one of the module maps in a search path or
in a subdirectory off the search path that has the same name as the
module we're looking for.
llvm-svn: 144433
map, so long as they have an umbrella header. This makes it possible
to introduce a module map + umbrella header for a given set of
headers, to turn it into a module.
There are two major deficiencies here: first, we don't go hunting for
module map files when we just see a module import (so we won't know
about the modules described therein). Second, we don't yet have a way
to build modules that don't have umbrella headers, or have incomplete
umbrella headers.
llvm-svn: 144424
the corresponding (top-level) modules. This isn't actually useful yet,
because we don't yet have a way to build modules out of module maps.
llvm-svn: 144410
Module map files provide a way to map between headers and modules, so
that we can layer a module system on top of existing headers without
changing those headers at all.
This commit introduces the module map file parser and the module map
that it generates, and wires up the module map file parser so that
we'll automatically find module map files as part of header
search. Note that we don't yet use the information stored in the
module map.
llvm-svn: 144402
AST file more lazy, so that we don't eagerly load that information for
all known identifiers each time a new AST file is loaded. The eager
reloading made some sense in the context of precompiled headers, since
very few identifiers were defined before PCH load time. With modules,
however, a huge amount of code can get parsed before we see an
@import, so laziness becomes important here.
The approach taken to make this information lazy is fairly simple:
when we load a new AST file, we mark all of the existing identifiers
as being out-of-date. Whenever we want to access information that may
come from an AST (e.g., whether the identifier has a macro definition,
or what top-level declarations have that name), we check the
out-of-date bit and, if it's set, ask the AST reader to update the
IdentifierInfo from the AST files. The update is a merge, and we now
take care to merge declarations before/after imports with declarations
from multiple imports.
The results of this optimization are fairly dramatic. On a small
application that brings in 14 non-trivial modules, this takes modules
from being > 3x slower than a "perfect" PCH file down to 30% slower
for a full rebuild. A partial rebuild (where the PCH file or modules
can be re-used) is down to 7% slower. Making the PCH file just a
little imperfect (e.g., adding two smallish modules used by a bunch of
.m files that aren't in the PCH file) tips the scales in favor of the
modules approach, with 24% faster partial rebuilds.
This is just a first step; the lazy scheme could possibly be improved
by adding versioning, so we don't search into modules we already
searched. Moreover, we'll need similar lazy schemes for all of the
other lookup data structures, such as DeclContexts.
llvm-svn: 143100
preprocessed entities that are #included in the range that we are interested.
This is useful when we are interested in preprocessed entities of a specific file, e.g
when we are annotating tokens. There is also an optimization where we cache the last
result of PreprocessingRecord::getPreprocessedEntitiesInRange and we re-use it if
there is a call with the same range as before.
rdar://10313365
llvm-svn: 142887
This also adds a -Wc++98-compat-pedantic for warning on constructs which would
be diagnosed by -std=c++98 -pedantic (that is, it warns even on C++11 features
which we enable by default, with no warning, in C++98 mode).
llvm-svn: 142034
CoreFoundation object-transfer properties audited, and add a #pragma
to cause them to be automatically applied to functions in a particular
span of code. This has to be implemented largely in the preprocessor
because of the requirement that the region be entirely contained in
a single file; that's hard to impose from the parser without registering
for a ton of callbacks.
llvm-svn: 140846
buffer as an 'unsigned char', so that integer promotion doesn't
sign-extend character values > 127 into oblivion. Fixes
<rdar://problem/10188919>.
llvm-svn: 140608
which will do a binary search and return a pair of iterators
for preprocessed entities in the given source range.
Source ranges of preprocessed entities are stored twice currently in
the PCH/Module file but this will be fixed in a subsequent commit.
llvm-svn: 140058
the AST reader), merge that header file information with whatever
header file information we already have. Otherwise, we might forget
something we already knew (e.g., that the header was #import'd already).
llvm-svn: 139979
-Use an array of offsets for all preprocessed entities
-Get rid of the separate array of offsets for just macro definitions;
for references to macro definitions use an index inside the preprocessed
entities array.
-Deserialize each preprocessed entity lazily, at first request; not in bulk.
Paves the way for binary searching of preprocessed entities that will offer
efficiency and will simplify things on the libclang side a lot.
llvm-svn: 139809
target triple to separate modules built under different
conditions. The hash is used to create a subdirectory in the module
cache path where other invocations of the compiler (with the same
version, language options, etc.) can find the precompiled modules.
llvm-svn: 139662
but there is a corresponding umbrella header in a framework, build the
module on-the-fly so it can be immediately loaded at the import
statement. This is very much proof-of-concept code, with details to be
fleshed out over time.
llvm-svn: 139558
where the compiler will look for module files. Eliminates the
egregious hack where we looked into the header search paths for
modules.
llvm-svn: 139538
'id' that can be used (only!) via a contextual keyword as the result
type of an Objective-C message send. 'instancetype' then gives the
method a related result type, which we have already been inferring for
a variety of methods (new, alloc, init, self, retain). Addresses
<rdar://problem/9267640>.
llvm-svn: 139275
keyword. We now handle this keyword in HandleIdentifier, making a note
for ourselves when we've seen the __import_module__ keyword so that
the next lexed token can trigger a module import (if needed). This
greatly simplifies Preprocessor::Lex(), and completely erases the 5.5%
-Eonly slowdown Argiris noted when I originally implemented
__import_module__. Big thanks to Argiris for noting that horrible
regression!
llvm-svn: 139265
Previously we would cut off the source file buffer at the code-completion
point; this impeded code-completion inside C++ inline methods and,
recently, with buffering ObjC methods.
Have the code-completion inserted into the source buffer so that it can
be buffered along with a method body. When we actually hit the code-completion
point the cut-off lexing or parsing.
Fixes rdar://10056932&8319466
llvm-svn: 139086
The function was only counting lines that included tokens and not empty lines,
but MaxLines (mainly initiated to the line where the code-completion point resides)
is a count of overall lines (even empty ones).
llvm-svn: 139085
and language-specific initialization. Use this to allow ASTUnit to
create a preprocessor object *before* loading the AST file. No actual
functionality change.
llvm-svn: 138983
LangOptions, rather than making distinct copies of
LangOptions. Granted, LangOptions doesn't actually get modified, but
this will eventually make it easier to construct ASTContext and
Preprocessor before we know all of the LangOptions.
llvm-svn: 138959
include guards don't show up as macro definitions in every translation
unit that imports a module. Macro definitions can, however, be
exported with the intentionally-ugly #__export_macro__
directive. Implement this feature by not even bothering to serialize
non-exported macros to a module, because clients of that module need
not (should not) know that these macros even exist.
llvm-svn: 138943
existing practice with Python extension modules. Not that Python
extension modules should be using a double-underscored identifier
anyway, but...
llvm-svn: 138870
collision between C99 hexfloats and C++0x user-defined literals by
giving C99 hexfloats precedence. Also, warning about user-defined
literals that conflict with hexfloats and those that have names that
are reserved by the implementation. Fixes <rdar://problem/9940194>.
llvm-svn: 138839
__import__ within the preprocessor, since the prior one foolishly
assumed that Preprocessor::Lex() was re-entrant. We now handle
__import__ at the top level (only), after macro expansion. This should
fix the buildbot failures.
llvm-svn: 138704
loads the named module. The syntax itself is intentionally hideous and
will be replaced at some later point with something more
palatable. For now, we're focusing on the semantics:
- Module imports are handled first by the preprocessor (to get macro
definitions) and then the same tokens are also handled by the parser
(to get declarations). If both happen (as in normal compilation),
the second one is redundant, because we currently have no way to
hide macros or declarations when loading a module. Chris gets credit
for this mad-but-workable scheme.
- The Preprocessor now holds on to a reference to a module loader,
which is responsible for loading named modules. CompilerInstance is
the only important module loader: it now knows how to create and
wire up an AST reader on demand to actually perform the module load.
- We search for modules in the include path, using the module name
with the suffix ".pcm" (precompiled module) for the file name. This
is a temporary hack; we hope to improve the situation in the
future.
llvm-svn: 138679
to increased calls to SourceManager::getFileID. (rdar://9992664)
Use a slightly different approach that is more efficient both in terms of speed
(no extra getFileID calls) and in SLocEntries reduction.
Comparing pre-r138129 and this patch we get:
For compiling SemaExpr.cpp reduction of SLocEntries by 26%.
For the boost enum library:
-SLocEntries -34% (note that this was -5% for r138129)
-Memory consumption -50%
-PCH size -31%
Reduced SLocEntries also benefit the hot function SourceManager::getFileID,
evident by the reduced "FileID scans".
llvm-svn: 138380
Currently getMacroArgExpandedLocation is very inefficient and for the case
of a location pointing at the main file it will end up checking almost all of
the SLocEntries. Make it faster:
-Use a map of macro argument chunks to their expanded source location. The map
is for a single source file, it's stored in the file's ContentCache and lazily
computed, like the source lines cache.
-In SLocEntry's FileInfo add an 'unsigned NumCreatedFIDs' field that keeps track
of the number of FileIDs (files and macros) that were created during preprocessing
of that particular file SLocEntry. This is useful when computing the macro argument
map in skipping included files while scanning for macro arg FileIDs that lexed from
a specific source file. Due to padding, the new field does not increase the size
of SLocEntry.
llvm-svn: 138225
for tokens that are lexed consecutively from the same FileID, instead of creating
a SLocEntry for each token. e.g for
assert(foo == bar);
there will be a single SLocEntry for the "foo == bar" chunk and locations
for the 'foo', '==', 'bar' tokens will point inside that chunk.
For parsing SemaExpr.cpp, this reduced the number of SLocEntries by 25%.
llvm-svn: 138129
1. Be more tolerant of comments in -CC (comment-preserving) mode. We were missing a few cases.
2. Make sure to expand the second FOO in "#if defined FOO FOO". (See also
r97253, which addressed the case of "#if defined(FOO FOO".)
Fixes PR10286.
llvm-svn: 136748
etc. With this I think essentially all of the SourceManager APIs are
converted. Comments and random other bits of cleanup should be all thats
left.
llvm-svn: 136057
and various other 'expansion' based terms. I've tried to reformat where
appropriate and catch as many references in comments but I'm going to do
several more passes. Also I've tried to expand parameter names to be
more clear where appropriate.
llvm-svn: 136056
FullSourceLoc::getInstantiationLoc to ...::getExpansionLoc. This is part
of the API and documentation update from 'instantiation' as the term for
macros to 'expansion'.
llvm-svn: 135914
entities generated directly by the preprocessor from those loaded from
the external source (e.g., the ASTReader). By separating these two
sets of entities into different vectors, we allow both to grow
independently, and eliminate the need for preallocating all of the
loaded preprocessing entities. This is similar to the way the recent
SourceManager refactoring treats FileIDs and the source location
address space.
As part of this, switch over to building a continuous range map to
track preprocessing entities.
llvm-svn: 135646
source locations from source locations loaded from an AST/PCH file.
Previously, loading an AST/PCH file involved carefully pre-allocating
space at the beginning of the source manager for the source locations
and FileIDs that correspond to the prefix, and then appending the
source locations/FileIDs used for parsing the remaining translation
unit. This design forced us into loading PCH files early, as a prefix,
whic has become a rather significant limitation.
This patch splits the SourceManager space into two parts: for source
location "addresses", the lower values (growing upward) are used to
describe parsed code, while upper values (growing downward) are used
for source locations loaded from AST/PCH files. Similarly, positive
FileIDs are used to describe parsed code while negative FileIDs are
used to file/macro locations loaded from AST/PCH files. As a result,
we can load PCH/AST files even during parsing, making various
improvemnts in the future possible, e.g., teaching #include <foo.h> to
look for and load <foo.h.gch> if it happens to be already available.
This patch was originally written by Sebastian Redl, then brought
forward to the modern age by Jonathan Turner, and finally
polished/finished by me to be committed.
llvm-svn: 135484
variants to 'expand'. This changed a couple of public APIs, including
one public type "MacroInstantiation" which is now "MacroExpansion". The
rest of the codebase was updated to reflect this, especially the
libclang code. Two of the C++ (and thus easily changed) libclang APIs
were updated as well because they pertained directly to the old
MacroInstantiation class.
No functionality changed.
llvm-svn: 135139
'expand'. Also update the public API it provides to the new term, and
propagate that update to the various clients.
No functionality changed.
llvm-svn: 135138
argument expansion to use the macro argument source locations as well.
Add a few tests to exercise this. There is still a bit more work needed
here though.
llvm-svn: 134674
instantiation and improve diagnostics which are stem from macro
arguments to trace the argument itself back through the layers of macro
expansion.
This requires some tricky handling of the source locations, as the
argument appears to be expanded in the opposite direction from the
surrounding macro. This patch provides helper routines that encapsulate
the logic and explain the reasoning behind how we step through macros
during diagnostic printing.
This fixes the rest of the test cases originially in PR9279, and later
split out into PR10214 and PR10215.
There is still some more work we can do here to improve the macro
backtrace, but those will follow as separate patches.
llvm-svn: 134660
When a macro instantiation occurs, reserve a SLocEntry chunk with length the
full length of the macro definition source. Set the spelling location of this chunk
to point to the start of the macro definition and any tokens that are lexed directly
from the macro definition will get a location from this chunk with the appropriate offset.
For any tokens that come from argument expansion, '##' paste operator, etc. have their
instantiation location point at the appropriate place in the instantiated macro definition
(the argument identifier and the '##' token respectively).
This improves macro instantiation diagnostics:
Before:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:5:11: note: instantiated from:
int y = M(/);
^
After:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:3:20: note: instantiated from:
\#define M(op) (foo op 3);
~~~ ^ ~
t.c:5:11: note: instantiated from:
int y = M(/);
^
The memory savings for a candidate boost library that abuses the preprocessor are:
- 32% less SLocEntries (37M -> 25M)
- 30% reduction in PCH file size (900M -> 635M)
- 50% reduction in memory usage for the SLocEntry table (1.6G -> 800M)
llvm-svn: 134587
structure to hold inferred information, then propagate each invididual
bit down to -cc1. Separate the bits of "supports weak" and "has a native
ARC runtime"; make the latter a CodeGenOption.
The tool chain is still driving this decision, because it's the place that
has the required deployment target information on Darwin, but at least it's
better-factored now.
llvm-svn: 134453
Previously macro expanded tokens were added to Preprocessor's bump allocator and never released,
even after the TokenLexer that were lexing them was finished, thus they were wasting memory.
A very "useful" boost library was causing clang to eat 1 GB just for the expanded macro tokens.
Introduce a special cache that works like a stack; a TokenLexer can add the macro expanded tokens
in the cache, and when it finishes, the tokens are removed from the end of the cache.
Now consumed memory by expanded tokens for that library is ~ 1.5 MB.
Part of rdar://9327049.
llvm-svn: 134105
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Patch by Matthieu Monrocq with tweaks by me to avoid StringRefs in the static
diagnostic data structures, which resulted in a huge global-var-init function.
Depends on llvm commit r132046.
llvm-svn: 132047
header. Getting it in the wrong order generated incorrect line markers in -E
mode. In the testcase from PR9861 we used to generate:
# 1 "test.c" 2
# 1 "./foobar.h" 1
# 0 "./foobar.h"
# 0 "./foobar.h" 3
# 2 "test.c" 2
now we properly produce:
# 1 "test.c" 2
# 1 "./foobar.h" 1
# 1 "./foobar.h" 3
# 2 "test.c" 2
This fixes PR9861.
llvm-svn: 131871
minor issues along the way:
- Non-type template parameters of type 'std::nullptr_t' were not
permitted.
- We didn't properly introduce built-in operators for nullptr ==,
!=, <, <=, >=, or > as candidate functions .
To my knowledge, there's only one (minor but annoying) part of nullptr
that hasn't been implemented: catching a thrown 'nullptr' as a pointer
or pointer-to-member, per C++0x [except.handle]p4.
llvm-svn: 131813