constant-offsets of a common base using the generic GEP-walking logic
I added for computing pointer differences in the same situation.
llvm-svn: 153419
inbounds GEPs. This isn't really necessary for simplifying pointer
differences, but I'm planning to re-use the same code to simplify
pointer comparisons where it is necessary. Since real code almost
exclusively uses inbounds GEPs, it doesn't seem worth it to support the
extra complexity of turning it on and off. If anyone would like that
back, feel free to shout. Note that instcombine will still catch any of
these patterns.
llvm-svn: 153418
spotted by inspection, and I've crafted no test case that triggers it on
my machine, but some of the windows builders are hitting what looks like
memory corruption, so *something* is amiss here.
This patch takes a more generalized approach to eliminating
double-visits. Imagine code such as:
%x = ...
%y = add %x, 1
%z = add %x, %y
You can imagine that if we simplify %x, we would add %y and %z to the
list. If the use-chain order happens to cause us to add them in reverse
order, we could pull %y off first, and simplify it, adding %z to the
list. We now have %z on the list twice, and will reference it after it
is deleted.
Currently, all my test cases happen to not trigger this, likely due to
the use-chain ordering, but there seems no guarantee that such
a situation could not occur, so we should handle it correctly.
Again, if anyone knows how to craft a testcase that actually triggers
this, please let me know.
llvm-svn: 153397
worklist. This can happen in theory when an instruction uses itself,
such as a PHI node. This was spotted by inspection, and unfortunately
I've not been able to come up with a test case that would trigger it. If
anyone has ideas, let me know...
llvm-svn: 153396
bit simpler by handling a common case explicitly.
Also, refactor the implementation to use a worklist based walk of the
recursive users, rather than trying to use value handles to detect and
recover from RAUWs during the recursive descent. This fixes a very
subtle bug in the previous implementation where degenerate control flow
structures could cause mutually recursive instructions (PHI nodes) to
collapse in just such a way that From became equal to To after some
amount of recursion. At that point, we hit the inf-loop that the assert
at the top attempted to guard against. This problem is defined away when
not using value handles in this manner. There are lots of comments
claiming that the WeakVH will protect against just this sort of error,
but they're not accurate about the actual implementation of WeakVHs,
which do still track RAUWs.
I don't have any test case for the bug this fixes because it requires
running the recursive simplification on unreachable phi nodes. I've no
way to either run this or easily write an input that triggers it. It was
found when using instruction simplification inside the inliner when
running over the nightly test-suite.
llvm-svn: 153393
not attched to a basic block or function. There are conservatively
correct answers in these cases, and this makes the analysis more useful
in contexts where we have a partially formed bit of IR.
I don't have any way to test this directly... suggestions welcome here,
but I'm not seeing anything sadly. I only found this using a subsequent
patch to the inliner which runs instsimplify on partially inlined
instructions, and even then only on a quite large program. I never got
a reasonable testcase out of it, and anything I do get is likely to be
quite fragile due to requiring an interaction of two different passes,
and the only result being a segfault if it goes wrong.
llvm-svn: 153176
theoretical fix since it only matters for types with >= 2^63 bits (!) and also
only matters if pointers have more than 64 bits, which is not supported anyway.
llvm-svn: 152831
take a TargetLibraryInfo parameter. Internally, rather than passing TD, TLI
and DT parameters around all over the place, introduce a struct for holding
them.
llvm-svn: 152623
offset accumulation to use a boring APInt instead of ConstantExprs.
I didn't go all the way to an 'int64_t' because I wanted APInt to handle
any magic required to properly wrap the arithmetic when the pointer
width is <64 bits. If there is a significant penalty from using APInt
here, first off WTF, and secondly let me know and I'll do the math by
hand.
I've left one layer still operating w/ ConstantExpr because it makes the
interface quite a bit simpler, and that one isn't iterative so has much
lower cost.
I suppose this may potentially speed up some strang compilation
situations, but I don't really expect much. It should have no functional
impact either way.
llvm-svn: 152590
Typically instcombine has handled this, but pointer differences show up
in several contexts where we would like to get constant folding, and
cannot afford to run instcombine. Specifically, I'm working on improving
the constant folding of arguments used in inline cost analysis with
instsimplify.
Doing this in instsimplify implies some algorithm changes. We have to
handle multiple layers of all-constant GEPs because instsimplify cannot
fold them into a single GEP the way instcombine can. Also, we're only
interested in all-constant GEPs. The result is that this doesn't really
replace the instcombine logic, it's just complimentary and focused on
constant folding.
Reviewed on IRC by Benjamin Kramer.
llvm-svn: 152555
The 'CmpInst::isFalseWhenEqual' function returns 'false' for values other than
simply equality. For instance, it returns 'false' for <= or >=. This isn't the
correct behavior for this transformation, which is checking for strict equality
and non-equality. It was causing the gcc.c-torture/execute/frame-address.c test
to fail because it would completely (and incorrectly) optimize a whole function
into a 'ret i32 0'.
llvm-svn: 152497
a common collection of methods on Value, and share their implementation.
We had two variations in two different places already, and I need the
third variation for inline cost estimation.
Reviewed by Duncan Sands on IRC, but further comments here welcome.
llvm-svn: 152490
with the given predicate, it matches any condition and returns the
predicate - d'oh! Original commit message:
The expression icmp eq (select (icmp eq x, 0), 1, x), 0 folds to false.
Spotted by my super-optimizer in 186.crafty and 450.soplex. We really
need a proper infrastructure for handling generalizations of this kind
of thing (which occur a lot), however this case is so simple that I decided
to go ahead and implement it directly.
llvm-svn: 143318
Spotted by my super-optimizer in 186.crafty and 450.soplex. We really
need a proper infrastructure for handling generalizations of this kind
of thing (which occur a lot), however this case is so simple that I decided
to go ahead and implement it directly.
llvm-svn: 143214
using BinaryOperator (which only works for instructions) when it should have
been a cast to OverflowingBinaryOperator (which also works for constants).
While there, correct a few other dubious looking uses of BinaryOperator.
Thanks to Chad Rosier for the testcase. Original commit message:
My super-optimizer noticed that we weren't folding this expression to
true: (x *nsw x) sgt 0, where x = (y | 1). This occurs in 464.h264ref.
llvm-svn: 143125
often expressed as "x >= y ? x : y", there is a good chance we can extract
the existing "x >= y" from it and use that as a replacement for "max(x,y)==x".
llvm-svn: 131049
but according to my super-optimizer there are only two missed simplifications
of -instsimplify kind when compiling bzip2, and this is one of them. It amuses
me to have bzip2 be perfectly optimized as far as instsimplify goes!
llvm-svn: 130840
max(a,b) >= a -> true. According to my super-optimizer, these are
by far the most common simplifications (of the -instsimplify kind)
that occur in the testsuite and aren't caught by -std-compile-opts.
llvm-svn: 130780
gave up when I realized I couldn't come up with a good name for what the
refactored function would be, to describe what it does.
This is PR9343 test12, which is test3 with arguments reordered. Whoops!
llvm-svn: 127318
possible. This goes into instcombine and instsimplify because instsimplify
doesn't need to check hasOneUse since it returns (almost exclusively) constants.
This fixes PR9343 #4#5 and #8!
llvm-svn: 127064
"icmp pred %X, CI" and a number of examples where "%X = binop %Y, CI2".
Some of these cases (div and rem) used to make it through opt -O2, but the
others are probably now making code elsewhere redundant (probably instcombine).
llvm-svn: 126988
plus some variations of this. According to my auto-simplifier this occurs a lot
but usually in combination with max/min idioms. Because max/min aren't handled
yet this unfortunately doesn't have much effect in the testsuite.
llvm-svn: 125462
versions of creation functions. Eventually, the "insertion point" versions
of these should just be removed, we do have IRBuilder afterall.
Do a massive rewrite of much of pattern match. It is now shorter and less
redundant and has several other widgets I will be using in other patches.
Among other changes, m_Div is renamed to m_IDiv (since it only matches
integer divides) and m_Shift is gone (it used to match all binops!!) and
we now have m_LogicalShift for the one client to use.
Enhance IRBuilder to have "isExact" arguments to things like CreateUDiv
and reduce redundancy within IRbuilder by having these methods chain to
each other more instead of duplicating code.
llvm-svn: 125194
auto-simplifier). This has a big impact on Ada code, but not much else.
Unfortunately the impact is mostly negative! This is due to PR9004 (aka
SCCP failing to resolve conditional branch conditions in the destination
blocks of the branch), in which simple correlated expressions are not
resolved but complicated ones are, so simplifying has a bad effect!
llvm-svn: 124788
overflow (nsw flag), which was disabled because it breaks 254.gap. I have
informed the GAP authors of the mistake in their code, and arranged for the
testsuite to use -fwrapv when compiling this benchmark.
llvm-svn: 124746
to do this and more, but would only do it if X/Y had only one use. Spotted as the
most common missed simplification in SPEC by my auto-simplifier, now that it knows
about nuw/nsw/exact flags. This removes a bunch of multiplications from 447.dealII
and 483.xalancbmk. It also removes a lot from tramp3d-v4, which results in much
more inlining.
llvm-svn: 124560
benchmarks, and that it can be simplified to X/Y. (In general you can only
simplify (Z*Y)/Y to Z if the multiplication did not overflow; if Z has the
form "X/Y" then this is the case). This patch implements that transform and
moves some Div logic out of instcombine and into InstructionSimplify.
Unfortunately instcombine gets in the way somewhat, since it likes to change
(X/Y)*Y into X-(X rem Y), so I had to teach instcombine about this too.
Finally, thanks to the NSW/NUW flags, sometimes we know directly that "Z*Y"
does not overflow, because the flag says so, so I added that logic too. This
eliminates a bunch of divisions and subtractions in 447.dealII, and has good
effects on some other benchmarks too. It seems to have quite an effect on
tramp3d-v4 but it's hard to say if it's good or bad because inlining decisions
changed, resulting in massive changes all over.
llvm-svn: 124487
optimized code are:
(non-negative number)+(power-of-two) != 0 -> true
and
(x | 1) != 0 -> true
Instcombine knows about the second one of course, but only does it if X|1
has only one use. These fire thousands of times in the testsuite.
llvm-svn: 124183
auto-simplier the transform most missed by early-cse is (zext X) != 0 -> X != 0.
This patch adds this transform and some related logic to InstructionSimplify
and removes some of the logic from instcombine (unfortunately not all because
there are several situations in which instcombine can improve things by making
new instructions, whereas instsimplify is not allowed to do this). At -O2 this
often results in more than 15% more simplifications by early-cse, and results in
hundreds of lines of bitcode being eliminated from the testsuite. I did see some
small negative effects in the testsuite, for example a few additional instructions
in three programs. One program, 483.xalancbmk, got an additional 35 instructions,
which seems to be due to a function getting an additional instruction and then
being inlined all over the place.
llvm-svn: 123911
These were not recommended by my auto-simplifier since they don't fire often enough.
However they do fire from time to time, for example they remove one subtraction from
the final bitcode for 483.xalancbmk.
llvm-svn: 123755
simplification in fully optimized code. It occurs sporadically in the testsuite, and
many times in 403.gcc: the final bitcode has 131 fewer subtractions after this change.
The reason that the multiplies are not eliminated is the same reason that instcombine
did not catch this: they are used by other instructions (instcombine catches this with
a more general transform which in general is only profitable if the operands have only
one use).
llvm-svn: 123754
simplification present in fully optimized code (I think instcombine fails to
transform some of these when "X-Y" has more than one use). Fires here and
there all over the test-suite, for example it eliminates 8 subtractions in
the final IR for 445.gobmk, 2 subs in 447.dealII, 2 in paq8p etc.
llvm-svn: 123442
threading of shifts over selects and phis while there. This fires here and
there in the testsuite, to not much effect. For example when compiling spirit
it fires 5 times, during early-cse, resulting in 6 more cse simplifications,
and 3 more terminators being folded by jump threading, but the final bitcode
doesn't change in any interesting way: other optimizations would have caught
the opportunity anyway, only later.
llvm-svn: 123441
While there, I noticed that the transform "undef >>a X -> undef" was wrong.
For example if X is 2 then the top two bits must be equal, so the result can
not be anything. I fixed this in the constant folder as well. Also, I made
the transform for "X << undef" stronger: it now folds to undef always, even
though X might be zero. This is in accordance with the LangRef, but I must
admit that it is fairly aggressive. Also, I added "i32 X << 32 -> undef"
following the LangRef and the constant folder, likewise fairly aggressive.
llvm-svn: 123417
is "X != 0 -> X" when X is a boolean. This occurs a lot because of the way
llvm-gcc converts gcc's conditional expressions. Add this, and a few other
similar transforms for completeness.
llvm-svn: 123372
numbering, in which it considers (for example) "%a = add i32 %x, %y" and
"%b = add i32 %x, %y" to be equal because the operands are equal and the
result of the instructions only depends on the values of the operands.
This has almost no effect (it removes 4 instructions from gcc-as-one-file),
and perhaps slows down compilation: I measured a 0.4% slowdown on the large
gcc-as-one-file testcase, but it wasn't statistically significant.
llvm-svn: 122654
the original instruction, half the cases were missed (making it not
wrong but suboptimal). Also correct a typo (A <-> B) in the second
chunk.
llvm-svn: 122414
a couple of existing transforms. This fires surprisingly often, for
example when compiling gcc "(X+(-1))+1->X" fires quite a lot as well
as various "and" simplifications (usually with a phi node operand).
Most of the time this doesn't make a real difference since the same
thing would have been done elsewhere anyway, eg: by instcombine, but
there are a few places where this results in simplifications that we
were not doing before.
llvm-svn: 122326
(they had just been forgotten before). Adding Xor causes "main" in the
existing testcase 2010-11-01-lshr-mask.ll to be hugely more simplified.
llvm-svn: 122245
it to be replaced by undef rather than not replaced at all, the idea being that
this may reduce the amount of work done by whoever called InstructionSimplify.
llvm-svn: 121860
uninitialized. The warning is terrible, has incorrect source locations, and has
a huge false positive rate such as *all* of these.
If anyone has a better solution, please let me know. Alternatively, I'll
happily add -Wno-uninitialized to the -Werror build mode. Maybe I can even do
it *only* when building with GCC instead of Clang.
llvm-svn: 120281
folding improvements: if P points to a type of size zero, turn "gep P, N" into "P".
More generally, if a gep index type has size zero, instcombine could replace the
index with zero, but that is not done here.
llvm-svn: 119942
instructions out of InstCombine and into InstructionSimplify. While
there, introduce an m_AllOnes pattern to simplify matching with integers
and vectors with all bits equal to one.
llvm-svn: 119536
simplified to itself (this can only happen in unreachable blocks).
Change it to return null instead. Hopefully this will fix some
buildbot failures.
llvm-svn: 119490
class, uses DominatorTree which is an analysis. This change moves all of
the tricky hasConstantValue logic to SimplifyInstruction, and replaces it
with a very simple literal implementation. I already taught users of
hasConstantValue that need tricky stuff to use SimplifyInstruction instead.
I didn't update InlineFunction because the IR looks like it might be in a
funky state at the point it calls hasConstantValue, which makes calling
SimplifyInstruction dangerous since it can in theory do a lot of tricky
reasoning. This may be a pessimization, for example in the case where
all phi node operands are either undef or a fixed constant.
llvm-svn: 119459
over a phi node by applying it to each operand may be wrong if the
operation and the phi node are mutually interdependent (the testcase
has a simple example of this). So only do this transform if it would
be correct to perform the operation in each predecessor of the block
containing the phi, i.e. if the other operands all dominate the phi.
This should fix the FFMPEG snow.c regression reported by İsmail Dönmez.
llvm-svn: 119347
offload the work to hasConstantValue rather than do something more
complicated (such handling mutually recursive phis) because (1) it is
not clear it is worth it; and (2) if it is worth it, maybe such logic
would be better placed in hasConstantValue. Adjust some GVN tests
which are now cleaned up much further (eg: all phi nodes are removed).
llvm-svn: 119043
nodes can be used in loops, this could result in infinite looping
if there is no recursion limit, so add such a limit. It is also
used for the SelectInst case because in theory there could be an
infinite loop there too if the basic block is unreachable.
llvm-svn: 118694
The simplifications performed here never create new instructions, they
only return existing instructions (or a constant), and so are always a
win. In theory they should transform (for example)
%z = and i32 %x, %y
%s = select i1 %cond, i32 %y, i32 %z
%r = and i32 %x, %s
into
%r = and i32 %x, y
but in practice they get into a fight with instcombine, and lose.
Unfortunately instcombine does a poor job in this case. Nonetheless
I'm committing this transform to make it easier to discuss what to
do to make peace with instcombine.
llvm-svn: 118679
of a select instruction, see if doing the compare with the
true and false values of the select gives the same result.
If so, that can be used as the value of the comparison.
llvm-svn: 118378
more careful not to call SimplifyInstructionsInBlock() on an unreachable block, the issue has been fixed at a higher level. Add
a big warning to SimplifyInstructionsInBlock() to hopefully prevent this in the future.
llvm-svn: 114117
mutated by recursive simplification. This also enhances
ReplaceAndSimplifyAllUses to actually do a real RAUW
at the end of it, which updates any value handles
pointing to "From" to start pointing to "To". This
seems useful for debug info and random other VH users.
llvm-svn: 108415
except that the result may not be a constant. Switch jump threading to
use it so that it gets things like (X & 0) -> 0, which occur when phi preds
are deleted and the remaining phi pred was a zero.
llvm-svn: 86637
takes decimated instructions and applies identities to them. This
is pretty minimal at this point, but I plan to pull some instcombine
logic out into these and similar routines.
llvm-svn: 86613