omp_is_initial_device() is marked as a built-in function in the current
compiler, and user code guarded by this call may be optimized away,
resulting in undesired behavior in some cases. This patch provides a
possible fix for such cases by defining the routine as a variant
function and removing it from builtin list.
Differential Revision: https://reviews.llvm.org/D99447
The second argument to the strnlen_s(str, size) function should be
sizeof(str) when str is a true array of characters with known size
(instead of just a char*). Use type traits to determine if first
parameter is a character array and use the correct size based on that
trait.
Differential Revision: https://reviews.llvm.org/D98209
-- Added or moved checks to appropriate places.
-- Removed ineffective null check where the pointer is already being
dereferenced around the code.
-- Initialized variables that can be used without definitions.
-- Added call to dlclose/FreeLibrary in OMPT tool activation.
-- Added a new build compiler definition.
Differential Revision: https://reviews.llvm.org/D98584
It is reported that after enabling hidden helper thread, the program
can hit the assertion `new_gtid < __kmp_threads_capacity` sometimes. The root
cause is explained as follows. Let's say the default `__kmp_threads_capacity` is
`N`. If hidden helper thread is enabled, `__kmp_threads_capacity` will be offset
to `N+8` by default. If the number of threads we need exceeds `N+8`, e.g. via
`num_threads` clause, we need to expand `__kmp_threads`. In
`__kmp_expand_threads`, the expansion starts from `__kmp_threads_capacity`, and
repeatedly doubling it until the new capacity meets the requirement. Let's
assume the new requirement is `Y`. If `Y` happens to meet the constraint
`(N+8)*2^X=Y` where `X` is the number of iterations, the new capacity is not
enough because we have 8 slots for hidden helper threads.
Here is an example.
```
#include <vector>
int main(int argc, char *argv[]) {
constexpr const size_t N = 1344;
std::vector<int> data(N);
#pragma omp parallel for
for (unsigned i = 0; i < N; ++i) {
data[i] = i;
}
#pragma omp parallel for num_threads(N)
for (unsigned i = 0; i < N; ++i) {
data[i] += i;
}
return 0;
}
```
My CPU is 20C40T, then `__kmp_threads_capacity` is 160. After offset,
`__kmp_threads_capacity` becomes 168. `1344 = (160+8)*2^3`, then the assertions
hit.
Reviewed By: protze.joachim
Differential Revision: https://reviews.llvm.org/D98838
For clang this change is NFC cleanup, because clang
never calls atomic functions from runtime library.
Basically, pause is good in spin-loops waiting for something.
Atomic CAS loops do not wait for anything,
each CAS failure means some other thread progressed.
Performance experiments show that the pause only causes unnecessary slowdown
on CPUs with slow pause instruction, no difference on CPUs with fast pause
instruction, removal of the pause gives lesser binary size which is good.
Differential Revision: https://reviews.llvm.org/D97079
Restrict the chunk_size * chunk_num to only occur for valid
chunk_nums and reimplement calculating the limit to avoid overflow.
Differential Revision: https://reviews.llvm.org/D96747
and __kmpc_end_masked. The "master" construct is deprecated. Changed
proc-bind keyword from "master" to "primary". Use of both master
construct and master as proc-bind keyword is still allowed, but
deprecated.
Remove references to "master" in comments and strings, and replace
with "primary" or "primary thread". Function names and variables were
not touched, nor were references to deprecated master construct. These
can be updated over time. No new code should refer to master.
This is a preview of allocator support for target memory that depends on the
offload runtime API which allocates memory as described below.
llvm_omp_target_alloc_host(size_t size, int device_num);
-- Returns non-migratable memory owned by host.
-- Memory is accessible by host and device(s).
llvm_omp_target_alloc_shared(size_t size, int device_num);
-- Returns migratable memory owned by host and device.
-- Memory is accessible by host and device.
llvm_omp_target_alloc_device(size_t size, int device_num);
-- Returns memory owned by device.
-- Memory is only accessible by device.
New memory space and predefined allocator names are
-- llvm_omp_target_host_mem_space
-- llvm_omp_target_shared_mem_space
-- llvm_omp_target_device_mem_space
-- llvm_omp_target_host_mem_alloc
-- llvm_omp_target_shared_mem_alloc
-- llvm_omp_target_device_mem_alloc
Differential Revision: https://reviews.llvm.org/D96669
Cleanup changes:
- check value read from file;
- remove dead code;
- make unsigned variable to read hexadecimal number to;
- add debug assertion to check ref count.
Differential Revision: https://reviews.llvm.org/D96893
Stitching id could be overridden causing reference of destroyed object
when number of teams is 1. The patch separates stitching id store
location for teams and parallel nested in teams.
Differential Revision: https://reviews.llvm.org/D96562
Allow users to use a non-system version of perl, python and awk, which is useful
in certain package managers.
Reviewed By: JDevlieghere, MaskRay
Differential Revision: https://reviews.llvm.org/D95119
PR#49334 reports a crash when offloading to x86_64 with `target nowait`,
which is caused by referencing a nullptr. The root cause of the issue is, when
pushing a hidden helper task in `__kmp_push_task`, it also maps the gtid to its
shadow gtid, which is wrong.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D97329
When including <ostream>, the register_callback macro of the OMPT callback.h
clashes with a function defined in ostream. This patch renames the macro
and includes ompt into the macro name.
This code alleviates some pathological loop parameters (lower,
upper, stride) within calculations involved in the static loop code. It
bounds the chunk size to the trip count if it is greater than the trip
count and also minimizes problematic code for when trip count < nth.
Differential Revision: https://reviews.llvm.org/D96426
Only attempt shutdown if lpReserved is NULL. The Windows documentation
states:
When handling DLL_PROCESS_DETACH, a DLL should free resources such as
heap memory only if the DLL is being unloaded dynamically (the
lpReserved parameter is NULL). If the process is terminating (the
lpReserved parameter is non-NULL), all threads in the process except the
current thread either have exited already or have been explicitly
terminated by a call to the ExitProcess function, which might leave some
process resources such as heaps in an inconsistent state. In this case,
it is not safe for the DLL to clean up the resources. Instead, the DLL
should allow the operating system to reclaim the memory.
Differential Revision: https://reviews.llvm.org/D96750
This patch limits the number of dispatch buffers (used for
loop worksharing construct) to between 1 and 4096.
Differential Revision: https://reviews.llvm.org/D96749
This silences warnings like these, in mingw builds with clang:
runtime/src/kmp_atomic.h:1021:13: warning: '__kmpc_atomic_cmplx8_rd' has C-linkage specified, but returns user-defined type 'kmp_cmplx64' (aka '__kmp_cmplx64_t') which is incompatible with C [-Wreturn-type-c-linkage]
runtime/src/z_Windows_NT_util.cpp:479:17: warning: cast from 'volatile void *' to 'type-parameter-0-0 *' drops volatile qualifier [-Wcast-qual]
flag = (C *)th->th.th_sleep_loc;
runtime/src/z_Windows_NT_util.cpp:1321:14: warning: cast to 'void *' from smaller integer type 'DWORD' (aka 'unsigned long') [-Wint-to-void-pointer-cast]
} else if ((void *)exit_val != (void *)th) {
Differential Revision: https://reviews.llvm.org/D96585
Add ifdefs around one function that only is used in unix build
configurations.
Add a void cast for a windows specific function that currently is
unused but may be intended to be used at some point.
Differential Revision: https://reviews.llvm.org/D96584
These variables are used only in certain build configurations,
or marked with a todo comment indicating that they should be
used/checked/reported.
Differential Revision: https://reviews.llvm.org/D96582
MinGW build configurations don't support this pragma (unless
compiling with clang, with -fms-extensions, and linking with
lld), and at least clang warns about it.
This library does end up linked by the cmake files anyway (as
long as the check works properly).
Differential Revision: https://reviews.llvm.org/D96581
check_library_exists fails for stdcall functions, because that
check doesn't include the necessary headers (and thus fails with
an undefined reference to _EnumProcessModules, when the import
library symbol actually is called _EnumProcessModules@16).
Merge the two previous checks check_include_files and
check_library_exists into one with check_c_source_compiles, and
merge the variables that indicate whether it succeeded.
Differential Revision: https://reviews.llvm.org/D96580
Three minor changes in this patch:
- added UNLIKELY hint to few rarely executed branches;
- replaced couple of run time checks with debug assertions;
- moved check of presence of ittnotify tool from inside the function call.
Differential Revision: https://reviews.llvm.org/D95816
This patch enables omp_get_num_devices() and omp_get_initial_device() on
Windows by providing an alternative to dlsym on Windows, and proposes to
add a new libomptarget entry, __tgt_get_num_devices().
Differential Revision: https://reviews.llvm.org/D96182
This patch adds lower-bound and upper-bound to num_teams clause
according to OpenMP 5.1 specification. The initial number of teams
created is implementation defined, but it will be greater than or
equal to lower-bound and less than or equal to upper-bound. If
num_teams clause is not specified, the number of teams created is
implementation defined, but it will be greater or equal to 1.
Differential Revision: https://reviews.llvm.org/D95820
New affinity patch introduced legitimate sign-compare warnings that
clang doesn't report but GCC-10 does. This removes the warnings by
changing two variables types to unsigned.
Differential Revision: https://reviews.llvm.org/D95818
This patch introduces a new environment variable to force monotonic
behavior for users that absolutely need it. This is in anticipation
of 5.0 change that uses non-monotonic behavior for dynamic scheduling
by default. Fixes for that and the actual switch are coming soon.
Differential Revision: https://reviews.llvm.org/D95263
Link error occurred when time profiling in libomp is enabled by default
because `libomp` is assumed to be a C library but the dependence on
`libLLVMSupport` for profiling is a C++ library. Currently the issue blocks all
OpenMP tests in Phabricator.
This patch set a new CMake option `OPENMP_ENABLE_LIBOMP_PROFILING` to
enable/disable the feature. By default it is disabled. Note that once time
profiling is enabled for `libomp`, it becomes a C++ library.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D95585
When OMP_PLACES contains an invalid value, the warning informs the user
that the fallback is OMP_PLACES=threads, but the actual internal setting
is OMP_PLACES=cores and is detected as such with KMP_SETTINGS=1.
This patch informs the user that OMP_PLACES=cores is being used instead
of OMP_PLACES=threads.
Differential Revision: https://reviews.llvm.org/D95170
This patch adds the new algorithm for topology discovery using cpuid
leaf 1f. Only the new die level is detected and integrated into the
current affinity mechanisms including KMP_AFFINITY (granularity level
and compact/scatter algorithm), OMP_PLACES=dies, and KMP_HW_SUBSET.
Differential Revision: https://reviews.llvm.org/D95157
HWLOC 2.0 has numa nodes as separate children and are not in the main
parent/child topology tree anymore. This change takes this into
account. The main topology detection loop in the create_hwloc_map()
routine starts at a hardware thread within the initial affinity mask and
goes up the topology tree setting the socket/core/thread labels
correctly.
This change also introduces some of the more generic changes that the
future kmp_topology_t structure will take advantage of including a
generic ratio & count array (finding all ratios of topology layers like
threads/core cores/socket and finding all counts of each topology
layer), generic radix1 reduction step, generic uniformity check, and
generic printing of topology (en_US.txt)
Differential Revision: https://reviews.llvm.org/D95156