Running `llc -verify-dom-info` on the attached testcase results in a
crash in the verifier, due to a stale dominator tree.
i.e.
DominatorTree is not up to date!
Computed:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,7}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,6}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
Actual:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,9}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,8}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
[3] %safe_mod_func_int8_t_s_s.exit.i.i.i.lor.lhs.false.i61.i.i.i_crit_edge {6,7}
This is because in `SelectionDAGIsel` we split critical edges without
updating the corresponding dominator for the function (and we claim
in `MachineFunctionPass::getAnalysisUsage()` that the domtree is preserved).
We could either stop preserving the domtree in `getAnalysisUsage`
or tell `splitCriticalEdge()` to update it.
As the second option is easy to implement, that's the one I chose.
Differential Revision: https://reviews.llvm.org/D33800
llvm-svn: 304742
Other calls to DAGCombiner::*PromoteOperand check the result, but here it could cause an assertion in getNode.
Falling back to any extend in this case instead of failing outright seems correct to me.
No test case because:
The failure was triggered by an out of tree backend. In order to trigger it, a backend would need to overload
TargetLowering::IsDesirableToPromoteOp to return true for a type for which ISD::SIGN_EXTEND_INREG is marked
illegal. In tree, only X86 overloads and sometimes returns true for MVT::i16 yet it marks
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);.
Patch by Jacob Young!
Differential Revision: https://reviews.llvm.org/D33633
llvm-svn: 304723
We'd called this "vm state" in the early days, but have long since standardized on calling it "deopt" in line with the operand bundle tag. Fix a few cases we'd missed.
llvm-svn: 304607
The recursive implementation of findNonImmUse may overflow stack
on extremely long use chains. This patch replaces it with an equivalent
iterative implementation.
Reviewed By: bogner
Differential Revision: https://reviews.llvm.org/D33775
llvm-svn: 304522
Summary:
This is a problem uncovered by stage2 testing. ADDCARRY end up being generated on target that do not support it.
The patch that introduced the problem has other patches layed on top of it, so we want to fix the issue rather than revert it to avoid creating a lor of churn.
A regression test will be added shortly, but this is committed as this in order to get the build back to green promptly.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33770
llvm-svn: 304409
Summary:
This is a continuation of the work started in D29872 . Passing the carry down as a value rather than as a glue allows for further optimizations. Introducing setcccarry makes the use of addc/subc unecessary and we can start the removal process.
This patch only introduce the optimization strictly required to get the same level of optimization as was available before nothing more.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33374
llvm-svn: 304404
Summary: This pattern is no very useful per se, but it exposes optimization for toehr patterns that wouldn't kick in otherwize. It's very common and worth optimizing for.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32756
llvm-svn: 304402
Summary:
If we attempt to unfold an SUnit in ScheduleDAG that results in
finding an already scheduled load, we must should abort the
unfold as it will not improve scheduling.
This fixes PR32610.
Reviewers: jmolloy, sunfish, bogner, spatel
Subscribers: llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D32911
llvm-svn: 304321
Correct references to alignment of store which may be deleted in a
previous iteration of merge. Instead use first store that would be
merged.
Corrects pr33172's use-after-poison caught by ASan.
Reviewers: spatel, hfinkel, RKSimon
Reviewed By: RKSimon
Subscribers: thegameg, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33686
llvm-svn: 304299
This code was compensating for FPOWI defaulting to Legal and many targets not changing it to Expand. This was fixed in r304215 to default to Expand so this special handling should no longer be necessary.
llvm-svn: 304221
Summary:
Currently FPOWI defaults to Legal and LegalizeDAG.cpp turns Legal into Expand for this opcode because Legal is a "lie".
This patch changes the default for this opcode to Expand and removes the hack from LegalizeDAG.cpp. It also removes all the code in the targets that set this opcode to Expand themselves since they can just rely on the default.
Reviewers: spatel, RKSimon, efriedma
Reviewed By: RKSimon
Subscribers: jfb, dschuff, sbc100, jgravelle-google, nemanjai, javed.absar, andrew.w.kaylor, llvm-commits
Differential Revision: https://reviews.llvm.org/D33530
llvm-svn: 304215
The extending load possibility was missed in:
https://reviews.llvm.org/rL304072
We might want to handle this cases as a follow-up, but bailing out for now
to avoid miscompiling.
llvm-svn: 304153
If we have (extract_subvector(load wide vector)) with no other users,
that can just be (load narrow vector). This is intentionally conservative.
Follow-ups may loosen the one-use constraint to account for the extract cost
or just remove the one-use check.
The memop chain updating is based on code that already exists multiple times
in x86 lowering, so that should be pulled into a helper function as a follow-up.
Background: this is a potential improvement noticed via regressions caused by
making x86's peekThroughBitcasts() not loop on consecutive bitcasts (see
comments in D33137).
Differential Revision: https://reviews.llvm.org/D33578
llvm-svn: 304072
In the best case:
extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
...we kill all of the extract/concat and just have narrow binops remaining.
If only one of the binop operands is amenable, this transform is still
worthwhile because we kill some of the extract/concat.
Optional bitcasting makes the code more complicated, but there doesn't
seem to be a way to avoid that.
The TODO about extending to more than bitwise logic is there because we really
will regress several x86 tests including madd, psad, and even a plain
integer-multiply-by-2 or shift-left-by-1. I don't think there's anything
fundamentally wrong with this patch that would cause those regressions; those
folds are just missing or brittle.
If we extend to more binops, I found that this patch will fire on at least one
non-x86 regression test. There's an ARM NEON test in
test/CodeGen/ARM/coalesce-subregs.ll with a pattern like:
t5: v2f32 = vector_shuffle<0,3> t2, t4
t6: v1i64 = bitcast t5
t8: v1i64 = BUILD_VECTOR Constant:i64<0>
t9: v2i64 = concat_vectors t6, t8
t10: v4f32 = bitcast t9
t12: v4f32 = fmul t11, t10
t13: v2i64 = bitcast t12
t16: v1i64 = extract_subvector t13, Constant:i32<0>
There was no functional change in the codegen from this transform from what I
could see though.
For the x86 test changes:
1. PR32790() is the closest call. We don't reduce the AVX1 instruction count in that case,
but we improve throughput. Also, on a core like Jaguar that double-pumps 256-bit ops,
there's an unseen win because two 128-bit ops have the same cost as the wider 256-bit op.
SSE/AVX2/AXV512 are not affected which is expected because only AVX1 has the extract/concat
ops to match the pattern.
2. do_not_use_256bit_op() is the best case. Everyone wins by avoiding the concat/extract.
Related bug for IR filed as: https://bugs.llvm.org/show_bug.cgi?id=33026
3. The SSE diffs in vector-trunc-math.ll are just scheduling/RA, so nothing real AFAICT.
4. The AVX1 diffs in vector-tzcnt-256.ll are all the same pattern: we reduced the instruction
count by one in each case by eliminating two insert/extract while adding one narrower logic op.
https://bugs.llvm.org/show_bug.cgi?id=32790
Differential Revision: https://reviews.llvm.org/D33137
llvm-svn: 303997
Currently getOptimalMemOpType returns i32 for large enough sizes without
checking for alignment, leading to poor code generation when misaligned accesses
aren't permitted as we generate a word store then later split it up into byte
stores. This means we inadvertantly go over the MaxStoresPerMemcpy limit and for
memset we splat the memset value into a word then immediately split it up
again.
Fix this by leaving it up to FindOptimalMemOpLowering to figure out which type
to use, but also fix a bug there where it wasn't correctly checking if
misaligned memory accesses are allowed.
Differential Revision: https://reviews.llvm.org/D33442
llvm-svn: 303990
This fixes an oversight in r300522, which changed alloca
dbg.values to no longer emit a DW_OP_deref.
The array.ll testcase was regenerated from source.
Fixes PR33166:
https://bugs.llvm.org/show_bug.cgi?id=33166
llvm-svn: 303897
C++14 added user-defined literal support for complex numbers so that you can
write something like "complex<double> val = 2i". However, there is an existing
GNU extension supporting this syntax and interpreting the result as a _Complex
type.
This changes parsing so that such literals are interpreted in terms of C++14's
operators if an overload is present but otherwise falls back to the original
GNU extension.
llvm-svn: 303694
Refactor the strlen optimization code to work for both strlen and wcslen.
This especially helps with programs in the wild where people pass
L"string"s to const std::wstring& function parameters and the wstring
constructor gets inlined.
This also fixes a lingerind API problem/bug in getConstantStringInfo()
where zeroinitializers would always give you an empty string (without a
length) back regardless of the actual length of the initializer which
did not work well in the TrimAtNul==false causing the PR mentioned
below.
Note that the fixed getConstantStringInfo() needed fixes to SelectionDAG
memcpy lowering and may lead to some cases for out-of-bounds
zeroinitializer accesses not getting optimized anymore. So some code
with UB may produce out of bound memory reads now instead of just
producing zeros.
The refactoring "accidentally" fixes http://llvm.org/PR32124
Differential Revision: https://reviews.llvm.org/D32839
llvm-svn: 303461
Summary:
While this makes some case better and some case worse - so it's unclear if it is a worthy combine just by itself - this is a useful canonicalisation.
As per discussion in D32756 .
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32916
llvm-svn: 303441
Summary:
There are several places in the codebase that try to calculate a maximum value in a Statistic object. We currently do this in one of two ways:
MaxNumFoo = std::max(MaxNumFoo, NumFoo);
or
MaxNumFoo = (MaxNumFoo > NumFoo) ? MaxNumFoo : NumFoo;
The first version reads from MaxNumFoo one time and uncontionally rwrites to it. The second version possibly reads it twice depending on the result of the first compare. But we have no way of knowing if the value was changed by another thread between the reads and the writes.
This patch adds a method to the Statistic object that can ensure that we only store if our value is the max and the previous max didn't change after we read it. If it changed we'll recheck if our value should still be the max or not and try again.
This spawned from an audit I'm trying to do of all places we uses the implicit conversion to unsigned on the Statistics objects. See my previous thread on llvm-dev https://groups.google.com/forum/#!topic/llvm-dev/yfvxiorKrDQ
Reviewers: dberlin, chandlerc, hfinkel, dblaikie
Reviewed By: chandlerc
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D33301
llvm-svn: 303318
Summary:
In SelectionDAG, when a store is immediately chained to another store
to the same address, elide the first store as it has no observable
effects. This is causes small improvements dealing with intrinsics
lowered to stores.
Test notes:
* Many testcases overwrite store addresses multiple times and needed
minor changes, mainly making stores volatile to prevent the
optimization from optimizing the test away.
* Many X86 test cases optimized out instructions associated with
associated with va_start.
* Note that test_splat in CodeGen/AArch64/misched-stp.ll no longer has
dependencies to check and can probably be removed and potentially
replaced with another test.
Reviewers: rnk, john.brawn
Subscribers: aemerson, rengolin, qcolombet, jyknight, nemanjai, nhaehnle, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33206
llvm-svn: 303198
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
Summary:
Eli pointed out that it's unsafe to combine the shifts to ISD::SHL etc.,
because those are not defined for b > sizeof(a) * 8, even after some of
the combiners run.
However, PPCISD::SHL defines that behavior (as the instructions themselves).
Move the combination to the backend.
The tests in shift_mask.ll still pass.
Reviewers: echristo, hfinkel, efriedma, iteratee
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D33076
llvm-svn: 302937
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
Updates the MSP430 target to generate EABI-compatible libcall names.
As a byproduct, adjusts the hardware multiplier options available in
the MSP430 target, adds support for promotion of the ISD::MUL operation
for 8-bit integers, and correctly marks R11 as used by call instructions.
Patch by Andrew Wygle.
Differential Revision: https://reviews.llvm.org/D32676
llvm-svn: 302820