CGP currently drops select's MD_prof profile data when
generating conditional branch which can lead to bad
code layout. The patch fixes the issue.
Differential Revision: http://reviews.llvm.org/D24169
llvm-svn: 280600
This fixes a regression introduced by revision 268094.
Revision 268094 added the following dag combine rule:
// trunc (shl x, K) -> shl (trunc x), K => K < vt.size / 2
That rule converts a truncate of a shift-by-constant into a shift of a truncated
value. We do this only if the shift count is less than half the size in bits of
the truncated value (K < vt.size / 2).
The problem is that the constraint on the shift count is incorrect, so the rule
doesn't work well in some cases involving vector types. The combine rule should
have been written instead like this:
// trunc (shl x, K) -> shl (trunc x), K => K < vt.getScalarSizeInBits()
Basically, if K is smaller than the "scalar size in bits" of the truncated value
then we know that by "sinking" the truncate into the operand of the shift we
would never accidentally make the shift undefined.
This patch fixes the check on the shift count, and adds test cases to make sure
that we don't regress the behavior.
Differential Revision: https://reviews.llvm.org/D24154
llvm-svn: 280482
When expanding a SETCC for which the low half is known to evaluate to false,
we can only throw it away for LT/GT comparisons, not LE/GE.
This fixes PR29170.
Differential Revision: https://reviews.llvm.org/D24151
llvm-svn: 280424
Prior to this, we could generate a vector_shuffle from an IR shuffle when the
size of the result was exactly the sum of the sizes of the input vectors.
If the output vector was narrower - e.g. a <12 x i8> being formed by a shuffle
with two <8 x i8> inputs - we would lower the shuffle to a sequence of extracts
and inserts.
Instead, we can form a larger vector_shuffle, and then extract a subvector
of the right size - e.g. shuffle the two <8 x i8> inputs into a <16 x i8>
and then extract a <12 x i8>.
This also includes a target-specific X86 combine that in the presence of
AVX2 combines:
(vector_shuffle <mask> (concat_vectors t1, undef)
(concat_vectors t2, undef))
into:
(vector_shuffle <mask> (concat_vectors t1, t2), undef)
in cases where this allows us to form VPERMD/VPERMQ.
(This is not a separate commit, as that pattern does not appear without
the DAGBuilder change.)
llvm-svn: 280418
According to spec cvtdq2pd and cvtps2pd instructions don't require memory operand to be aligned
to 16 bytes. This patch removes this requirement from the memory folding table.
Differential Revision: https://reviews.llvm.org/D23919
llvm-svn: 280402
Legalization tends to create anyext(trunc) patterns. This should always be
combined - into either a single trunc, a single ext, or nothing if the
types match exactly. But if we happen to combine the trunc first, we may pull
the trunc away from the anyext or make it implicit (e.g. the truncate(extract)
-> extract(bitcast) fold).
To prevent this, we can avoid doing the fold, similarly to how we already handle
fpround(fpextend).
Differential Revision: https://reviews.llvm.org/D23893
llvm-svn: 280386
Summary:
This change promotes the 'isTailCall(...)' member function to
TargetInstrInfo as a query interface for determining on a per-target
basis whether a given MachineInstr is a tail call instruction. We build
upon this in the XRay instrumentation pass to emit special sleds for
tail call optimisations, where we emit the correct kind of sled.
The tail call sleds look like a mix between the function entry and
function exit sleds. Form-wise, the sled comes before the "jmp"
instruction that implements the tail call similar to how we do it for
the function entry sled. Functionally, because we know this is a tail
call, it behaves much like an exit sled -- i.e. at runtime we may use
the exit trampolines instead of a different kind of trampoline.
A follow-up change to recognise these sleds will be done in compiler-rt,
so that we can start intercepting these initially as exits, but also
have the option to have different log entries to more accurately reflect
that this is actually a tail call.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D23986
llvm-svn: 280334
More preparation for dropping source types from MachineInstrs: regsters coming
out of already-selected code (i.e. non-generic instructions) don't have a type,
but that information is needed so we must add it manually.
This is done via a new G_TYPE instruction.
llvm-svn: 280292
This is a first step towards supporting deopt value lowering and reporting entirely with the register allocator. I hope to build on this in the near future to support live-on-return semantics, but I have a use case which allows me to test and investigate code quality with just the live-in semantics so I've chosen to start there. For those curious, my use cases is our implementation of the "__llvm_deoptimize" function we bind to @llvm.deoptimize. I'm choosing not to hard code that fact in the patch and instead make it configurable via function attributes.
The basic approach here is modelled on what is done for the "Live In" values on stackmaps and patchpoints. (A secondary goal here is to remove one of the last barriers to merging the pseudo instructions.) We start by adding the operands directly to the STATEPOINT SDNode. Once we've lowered to MI, we extend the remat logic used by the register allocator to fold virtual register uses into StackMap::Indirect entries as needed. This does rely on the fact that the register allocator rematerializes. If it didn't along some code path, we could end up with more vregs than physical registers and fail to allocate.
Today, we *only* fold in the register allocator. This can create some weird effects when combined with arguments passed on the stack because we don't fold them appropriately. I have an idea how to fix that, but it needs this patch in place to work on that effectively. (There's some weird interaction with the scheduler as well, more investigation needed.)
My near term plan is to land this patch off-by-default, experiment in my local tree to identify any correctness issues and then start fixing codegen problems one by one as I find them. Once I have the live-in lowering fully working (both correctness and code quality), I'm hoping to move on to the live-on-return semantics. Note: I don't have any *known* miscompiles with this patch enabled, but I'm pretty sure I'll find at least a couple. Thus, the "experimental" tag and the fact it's off by default.
Differential Revision: https://reviews.llvm.org/D24000
llvm-svn: 280250
Assuming the default FP env, we should not treat fdiv and frem any differently in terms of
trapping behavior than any other FP op. Ie, FP ops do not trap with the default FP env.
This matches how we treat these ops in IR with isSafeToSpeculativelyExecute(). There's a
similar bug in Constant::canTrap().
This bug manifests in PR29114:
https://llvm.org/bugs/show_bug.cgi?id=29114
...as a sequence of scalar divisions instead of a vector division on x86 for a <3 x float>
type.
Differential Revision: https://reviews.llvm.org/D23974
llvm-svn: 279970
MRI::getMaxLaneMaskForVReg does not always cover the whole register.
For example, on X86 the upper 16 bits of EAX cannot be accessed via
any subregister. Consequently, there is no lane mask that only covers
that part of EAX. The getMaxLaneMaskForVReg will return the union of
the lane masks for all subregisters, and in case of EAX, that union
will not cover the upper 16 bits.
This fixes https://llvm.org/bugs/show_bug.cgi?id=29132
llvm-svn: 279969
The problem occurs when the Node doesn't updated in place , UpdateNodeOperation() return the node that already exist.
In this case assert fail in PromoteIntegerOperand() , N have 2 results ( val + chain).
Differential Revision: http://reviews.llvm.org/D23756
llvm-svn: 279961
Over eager combing prevents the correct folding of writemasks.
At the moment this occurs for ALL EVEX shuffles, in the future we need to check that the user of the root shuffle is a VSELECT that can fold to a writemask.
llvm-svn: 279934
Previously we weren't creating masked logical operations if bitcasts appeared between the logic operation and the select. The IR optimizers can move bitcasts across logic operations and create these cases. To minimize the number of cases we need to handle, this change promotes all logic ops to an i64 vector type just like when only SSE or AVX is available.
Unfortunately, this also has the consequence of making it difficult to select unmasked VPANDD/VPORD/VPXORD in all the cases it was previously used. This is the cause of most of the test change. This shouldn't result in any functional change though.
llvm-svn: 279929
Adds a baseline test for lowering shuffles where the width of the output
vector is not twice the size of the input vectors. Many of those sequences
are suboptimal, and will hopefully be improved in follow-up patches.
llvm-svn: 279888
This reverts most of r274613 (AKA r274626) and its follow-ups (r276347, r277289),
due to miscompiles in the test suite. The FastISel change was left in, because
it apparently fixes an unrelated issue.
(Recommit of r279782 which was broken due to a bad merge.)
This fixes 4 out of the 5 test failures in PR29112.
llvm-svn: 279788
This reverts most of r274613 and its follow-ups (r276347, r277289), due to
miscompiles in the test suite. The FastISel change was left in, because it
apparently fixes an unrelated issue.
This fixes 4 out of the 5 test failures in PR29112.
llvm-svn: 279782
Fix VPAVG detection to require AVX512BW, not AVX512F for 512-bit widths,
and change associated asserts to assert in the right direction...
This fixes PR29111.
llvm-svn: 279755
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
tracksSubRegLiveness only depends on the Subtarget and a cl::opt, there
is not need to change it or save/parse it in a .mir file.
Make the field const and move the initialization LiveIntervalAnalysis to the
MachineRegisterInfo constructor. Also cleanup some code and fix some
instances which better use MachineRegisterInfo::subRegLivenessEnabled() instead
of TargetSubtargetInfo::enableSubRegLiveness().
llvm-svn: 279676