Seems it broke the Polly build.
From http://lab.llvm.org:8011/builders/perf-x86_64-penryn-O3-polly-fast/builds/11687/steps/compile/logs/stdio:
In file included from /home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.src/lib/TableGen/Record.cpp:14:0:
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.src/include/llvm/TableGen/Record.h:369:3: error: looser throw specifier for 'virtual llvm::TypedInit::~TypedInit()'
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.src/include/llvm/TableGen/Record.h:270:11: error: overriding 'virtual llvm::Init::~Init() noexcept (true)'
llvm-svn: 247222
The assertion was weaker than it should be and gave the impression we're growing the number of base defining values being considered during the fixed point interation. That's not true. The tighter form of the assert is useful documentation.
llvm-svn: 247221
All of the complexity is in cleanupret, and it mostly follows the same
codepaths as catchret, except it doesn't take a return value in RAX.
This small example now compiles and executes successfully on win32:
extern "C" int printf(const char *, ...) noexcept;
struct Dtor {
~Dtor() { printf("~Dtor\n"); }
};
void has_cleanup() {
Dtor o;
throw 42;
}
int main() {
try {
has_cleanup();
} catch (int) {
printf("caught it\n");
}
}
Don't try to put the cleanup in the same function as the catch, or Bad
Things will happen.
llvm-svn: 247219
This reapply commit r247178 after post-commit review from D.Blaikie
in a way that makes it compatible with the existing API.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 247215
The purpose is to allow templated wrapper to work with either
ArrayRef or any convertible operation:
template<typename Container>
void wrapper(const Container &Arr) {
impl(makeArrayRef(Arr));
}
with Container being a std::vector, a SmallVector, or an ArrayRef.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 247214
This change is simply enhancing the existing inference algorithm to handle insertelement instructions by conservatively inserting a new instruction to propagate the vector of associated base pointers. In the process, I'm ripping out the peephole optimizations which mostly helped cover the fact this hadn't been done.
Note that most of the newly inserted nodes will be nearly immediately removed by the post insertion optimization pass introduced in 246718. Arguably, we should be trying harder to avoid the malloc traffic here, but I'd rather get the code correct, then worry about compile time.
Unlike previous extensions of the algorithm to handle more case, I discovered the existing code was causing miscompiles in some cases. In particular, we had an implicit assumption that the peephole covered *all* insert element instructions, so if we had a value directly based on a insert element the peephole didn't cover, we proceeded as if it were a base anyways. Not good. I believe we had the same issue with shufflevector which is why I adjusted the predicate for them as well.
Differential Revision: http://reviews.llvm.org/D12583
llvm-svn: 247210
Previously, the base pointer algorithm wasn't deterministic. The core fixed point was (of course), but we were inserting new nodes and optimizing them in an order which was unspecified and variable. We'd somewhat hacked around this for testing by sorting by value name, but that doesn't solve the general determinism problem.
Instead, we can use the order of traversal over the def/use graph to give us a single consistent ordering. Today, this is a DFS order, but the exact order doesn't mater provided it's deterministic for a given input.
(Q: It is safe to rely on a deterministic order of operands right?)
Note that this only fixes the determinism within a single inference step. The inference step is currently invoked many times in a non-deterministic order. That's a future change in the sequence. :)
Differential Revision: http://reviews.llvm.org/D12640
llvm-svn: 247208
Visit disjoint sets in a deterministic order based on the maximum BitSetNM
index, otherwise the order in which we visit them will depend on pointer
comparisons. This was being exposed by MSan.
llvm-svn: 247201
Generating call assume(icmp %vtable, %global_vtable) after constructor
call for devirtualization purposes.
For more info go to:
http://lists.llvm.org/pipermail/cfe-dev/2015-July/044227.html
Edit:
Fixed version because of PR24479.
After this patch got reverted because of ScalarEvolution bug (D12719)
Merged after John McCall big patch (Added Address).
http://reviews.llvm.org/D11859
llvm-svn: 247199
I was experimenting with it briefly, and then settled on Target::GetTypeSystem + TypeSystem::GetBasicType, so this API is not necessary to have
Thanks to Ryan Brown for bringing it to my attention
llvm-svn: 247195
The 32-bit tables don't actually contain PC range data, so emitting them
is incredibly simple.
The 64-bit tables, on the other hand, use the same table for state
numbering as well as label ranges. This makes things more difficult, so
it will be implemented later.
llvm-svn: 247192
It often hangs or times out, and obscures issues with other tests.
Just skip it for now (until the FreeBSD test suite is producing
consistent results) so that we can get a buildbot back.
Previous investigation (for failures) in llvm.org/pr18522
llvm-svn: 247190
We know that a reference can always be dereferenced. However, we don't
always know the number of bytes if the reference's pointee type is
incomplete. This case was correctly handled but we didn't consider the
case where the type is complete but we cannot calculate its size for ABI
specific reasons. In this specific case, a member pointer's size is
available only under certain conditions.
This fixes PR24703.
llvm-svn: 247188
This change enables EmitRecord to pass the supplied record Code to
EmitRecordWithAbbrevImpl, rather than insert it into the Vals array.
It is an enabler for changing EmitRecord to take an ArrayRef<uintty> instead
of a SmallVectorImpl<uintty>&
Patch suggested by Duncan P. N. Exon Smith, modified by myself a bit to get
correct assertion checking.
llvm-svn: 247186