thorough tests.
Original commit message:
[modules] Fix macro hiding bug exposed if:
* A submodule of module A is imported into module B
* Another submodule of module A that is not imported into B exports a macro
* Some submodule of module B also exports a definition of the macro, and
happens to be the first submodule of B that imports module A.
In this case, we would incorrectly determine that A's macro redefines B's
macro, and so we don't need to re-export B's macro at all.
This happens with the 'assert' macro in an LLVM self-host. =(
llvm-svn: 213416
Just because we can open a directory named "COcoa.framework" doesn't
mean we should provide a "COcoa" module on a case-insensitive filesystem.
llvm-svn: 212975
Something went wrong with r211426, it is an older version of this code
and should not have been committed. It was reverted with r211434.
Original commit message:
We didn't properly implement support for the sized integer suffixes.
Suffixes like i16 were essentially ignored instead of mapping them to
the appropriately sized integer type.
This fixes PR20008.
Differential Revision: http://reviews.llvm.org/D4132
llvm-svn: 211441
This reverts commit r211426.
This broke the arm bots. The crash can be reproduced on X86 by running.
./bin/clang -cc1 -fsyntax-only -verify -fms-extensions ~/llvm/clang/test/Lexer/ms-extensions.c -triple arm-linux
llvm-svn: 211434
We didn't properly implement support for the sized integer suffixes.
Suffixes like i16 were essentially ignored instead of mapping them to
the appropriately sized integer type.
This fixes PR20008.
Differential Revision: http://reviews.llvm.org/D4132
llvm-svn: 211426
The compilation pipeline doesn't actually need to know about the high-level
concept of diagnostic mappings, and hiding the final computed level presents
several simplifications and other potential benefits.
The only exceptions are opportunistic checks to see whether expensive code
paths can be avoided for diagnostics that are guaranteed to be ignored at a
certain SourceLocation.
This commit formalizes that invariant by introducing and using
DiagnosticsEngine::isIgnored() in place of individual level checks throughout
lex, parse and sema.
llvm-svn: 211005
This begins to address cognitive dissonance caused by treating the Note
diagnostic level as a severity in the diagnostic engine.
No change in functionality.
llvm-svn: 210758
Diagnostic mappings are used to calculate the final severity of diagnostic
instances.
Detangle the implementation to reflect the terminology used in documentation
and bindings.
No change in functionality.
llvm-svn: 210518
With recent changes, this is now a compatible language extension and can be
safely enabled with -ms-extensions instead of requiring the full
-ms-compatibility MSVC drop-in mode. As such we can now also emit an extension
warning under -Wmicrosoft to help users port their code.
llvm-svn: 209978
This failure mode shows up occasionally when users try to include C headers in
C++ projects or when porting from Windows. We might as well recover in the way
the user expected, thus avoiding confusing diagnostic messages at point of use.
llvm-svn: 209963
The checks below can hypothetically apply to converted operator name
identifiers.
In practice there are no builtin macros etc. with those names so there's no
behavioural change to test.
llvm-svn: 209962
Summary:
The limits on the number of fix-it hints and ranges attached to a
diagnostic are arbitrary and don't apply universally to all users of the
DiagnosticsEngine. The way the limits are enforced may lead to diagnostics
generating invalid sets of fixes. I suggest removing the limits, which will also
simplify the implementation.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D3879
llvm-svn: 209468
When using the VFS, we want the virtual header location when searching
for a framework module, since that will be the one in the correct
directory structure for the module.
I'll add a regression test once I finish reducing the larger one I have.
llvm-svn: 208901
MacroArgs are owned by TokenLexer, and when a TokenLexer is destroyed, it'll
call its MacroArgs's destroy() method. destroy() only appends the MacroArg to
Preprocessor's MacroArgCache list, and Preprocessor's destructor then calls
deallocate() on all MacroArgs in that list. This method then ends up freeing
the MacroArgs's memory.
In a code completion context, Parser::cutOffParsing() gets called when a code
completion token is hit, which changes the type of the current token to
tok::eof. eof tokens aren't always ConsumeToken()ed, so
Preprocessor::HandleEndOfFile() isn't always called, and that function is
responsible for popping the macro stack.
Due to this, Preprocessor::CurTokenLexer can be non-NULL when
~Preprocessor runs. It's a unique_ptr, so it ended up being destructed after
~Preprocessor completed, and its MacroArgs thus got added to the freelist after
the code freeing things on the freelist had already completed. The fix is to
explicitly call reset() before the freelist processing happens. (See the bug
for more notes.)
llvm-svn: 208438
But keep -Wnon-modular-include-in-[framework-]module
This warning is too noisy and doesn't really indicate a problem for most
people. Even though it would only really affect people using
-Weverything, that seems bad so remove it.
llvm-svn: 208345
Warn on non-modular includes in various contexts.
-Wnon-modular-include
-Wnon-modular-include-in-module
-Wnon-modular-include-in-framework-module
Where each group is a subgroup of those above it.
llvm-svn: 208004
whole code would be better with std::unique_ptr managing the lifetimes
of the handlers, but I wanted to make a targeted fix to the leaks first.
With this change, all of the Clang preprocessor tests are leak free with
LSan.
llvm-svn: 207872
The Preprocessor::Initialize() function already offers a clear interface to
achieve this, further reducing the confusing number of states a newly
constructed preprocessor can have.
llvm-svn: 207825
Otherwise including a header in your source file that is not included by
framework's umbrella header will silently add an empty submodule with that
name.
is automatically translated to
@import Foo.NotInModule;
which then would have succeeded because the inferred module map
contained an empty submodule called NotInModule.
llvm-svn: 207024
digits. Turns out we have completely separate lexing codepaths for floating
point numbers depending on whether or not they start with a zero. Who knew...
=)
llvm-svn: 206932