We were assuming all SBFX-like operations would have the shl/asr form, but
often when the field being extracted is an i8 or i16, we end up with a
SIGN_EXTEND_INREG acting on a shift instead. Simple enough to check for though.
llvm-svn: 213754
Although the final shifter operand is a rotate, this actually only matters for
the half-word extends when the amount == 24. Otherwise folding a shift in is
just as good.
llvm-svn: 213753
This pass attempts to speculatively use a sqrt instruction if one exists on the target, falling back to a libcall if the target instruction returned NaN.
This was enabled for MIPS and System-Z, but is well guarded and is good for most targets - GCC does this for (that I've checked) X86, ARM and AArch64.
llvm-svn: 213752
The ARM ARM prohibits STRB instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRB instructions with unpredictable behavior.
llvm-svn: 213750
There really is no arm64_be: it was a useful fiction to test big-endian support
while both backends existed in parallel, but now the only platform that uses
the name (iOS) doesn't have a big-endian variant, let alone one called
"arm64_be".
llvm-svn: 213748
The ARM ARM prohibits STR instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STR instructions with unpredictable behavior.
llvm-svn: 213745
Having both Triple::arm64 and Triple::aarch64 is extremely confusing, and
invites bugs where only one is checked. In reality, the only legitimate
difference between the two (arm64 usually means iOS) is also present in the OS
part of the triple and that's what should be checked.
We still parse the "arm64" triple, just canonicalise it to Triple::aarch64, so
there aren't any LLVM-side test changes.
llvm-svn: 213743
This chang fully reverts r211771.
That revision added a canonicalization rule which has the potential to causes a
combine-cycle in the target-independent canonicalizing DAG combine.
The plan is to move the logic that forms target specific addsub nodes as part of
the lowering of shuffles.
llvm-svn: 213736
instruction sequences with CHECK-NEXT for these test cases.
This notably exposes how absolutely horrible the generated code is for
several of these test cases, and will make any future updates to the
test as our vector instruction selection gets better.
llvm-svn: 213732
The post-indexed instructions were missing the constraint, causing unpredictable STRH instructions to be emitted.
The earlyclobber constraint on the pre-indexed STR instructions is not strictly necessary, as the instruction selection for pre-indexed STR instructions goes through an additional layer of pseudo instructions which have the constraint defined, however it doesn't hurt to specify the constraint directly on the pre-indexed instructions as well, since at some point someone might create instances of them programmatically and then the constraint is definitely needed.
llvm-svn: 213729
insertions.
The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).
This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.
A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.
I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.
Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.
Differential Revision: http://reviews.llvm.org/D4616
llvm-svn: 213727
FIXME: "llvm-rtdyld -verify -check" is still sensitive to path separator.
Fix searching StubMap to be tolerant of both '/' and '\\' on Win32.
llvm-svn: 213723
There's no reason to restrict this particular piece of RuntimeDyldChecker
functionality to +Asserts builds.
This should fix failures in MachO_x86-64_PIC_relocations.s on release bots.
llvm-svn: 213708
RuntimeDyldChecker had been testing isalpha(Expr[0]) to recognise symbol tokens,
and throwing unrecognized token errors when it hit symbols with leading
underscores. This fixes that.
llvm-svn: 213706
This commit modifies the existing call lowering functions to be used as the
FastLowerCall and FastLowerIntrinsicCall target-hooks instead.
This enables patchpoint intrinsic lowering for AArch64.
This fixes <rdar://problem/17733076>
llvm-svn: 213704
This patch introduces a 'stub_addr' builtin that can be used to find the address
of the stub for a given (<file>, <section>, <symbol>) tuple. This address can be
used both to verify the contents of stubs (by loading from the returned address)
and to verify references to stubs (by comparing against the returned address).
Example (1) - Verifying stub contents:
Load 8 bytes (assuming a 64-bit target) from the stub for 'x' in the __text
section of f.o, and compare that value against the addres of 'x'.
# rtdyld-check: *{8}(stub_addr(f.o, __text, x) = x
Example (2) - Verifying references to stubs:
Decode the immediate of the instruction at label 'l', and verify that it's
equal to the offset from the next instruction's PC to the stub for 'y' in the
__text section of f.o (i.e. it's the correct PC-rel difference).
# rtdyld-check: decode_operand(l, 4) = stub_addr(f.o, __text, y) - next_pc(l)
l:
movq y@GOTPCREL(%rip), %rax
Since stub inspection requires cooperation with RuntimeDyldImpl this patch
pimpl-ifies RuntimeDyldChecker. Its implementation is moved in to a new class,
RuntimeDyldCheckerImpl, that has access to the definition of RuntimeDyldImpl.
llvm-svn: 213698
Factor out the addend encoding into a helper function and simplify the
processRelocationRef.
Also add a few simple rtdyld tests. More tests to come once GOTs can be tested too.
Related to <rdar://problem/17768539>
llvm-svn: 213689
In MachO for AArch64 it is possible to have an explicit addend defined by
the ARM64_RELOC_ADDEND relocation or having an addend encoded within the
instruction. Only one of them are allowed per relocation.
llvm-svn: 213687
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.
It implements :
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))
Differential Revision: http://reviews.llvm.org/D4068
llvm-svn: 213678
"((~A & B) | A) -> (A | B)" and "((A & B) | ~A) -> (~A | B)"
Original Patch credit to Ankit Jain !!
Differential Revision: http://reviews.llvm.org/D4591
llvm-svn: 213676
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
llvm-svn: 213670
Without this, we produce non-extern relocations when targeting older OS X
versions that ld64 can't cope with in the particular context of __eh_frame
sections (who'd want generic relocation-processing anyway?).
This means that an updated linker (ld64 from Xcode 3.2.6 or later) may be
needed when targeting such platforms with a modern version of LLVM, but this is
probably the case anyway and a reasonable requirement.
PR20212, rdar://problem/17544795
llvm-svn: 213665
to globally be controlled. Individual targets (e.g. ExceptionDemo) can
still override this by using LLVM_REQUIRE_RTTI and LLVM_REQUIRE_EH if
they need to be compiled with RTTI or exception handling respectively.
llvm-svn: 213663
- When CMake builds the documentation with sphinx-build it treats
warnings as errors. We should be consistent with what we do in
CMake.
- Having warnings treated as errors will hopefully encourage
developers to write documentation correctly.
llvm-svn: 213661
DAG into a helper function.
This adds a trip through the (very minimal) verification logic in
a bunch of places that were missing it, but shouldn't have any other
impact outside of refactoring. I'm hoping to use this to do more clever
things when DAG nodes are inserted into the graph.
llvm-svn: 213612
a bug in 2010 when they were added but are adding no value today.
In fact, they are utter lies. NodeAllocator is used to allocate almost
all of these node types. I don't know what we were trying to assert
here, and the docs don't give any answer. Until we once again stumble
upon a bug needing help, let's clear the path for improvements.
llvm-svn: 213610
file not in the test/ area). Backing out now so that this test isn't part of
the 3.5 branch.
Original commit message: "TableGen: Allow AddedComplexity values to be negative
[...]"
llvm-svn: 213596
As it turns out, the capture tracker named CaptureBefore used by AA, and now
available via the PointerMayBeCapturedBefore function, would have been
more-aptly named CapturedBeforeOrAt, because it considers captures at the
instruction provided. This is not always what one wants, and it is difficult to
get the strictly-before behavior given only the current interface. This adds an
additional parameter which controls whether or not you want to include
captures at the provided instruction. The default is not to include the
instruction provided, so that 'Before' matches its name.
No functionality change intended.
llvm-svn: 213582
GCC believes it may be possible to not return a value from the switch:
lib/Target/R600/SIRegisterInfo.cpp:187:1: warning: control reaches end of non-void function [-Wreturn-type]
Add an unreachable label to indicate that this is not possible and still permit
switch coverage checking.
llvm-svn: 213572
We should update the usages to all of the results;
otherwise, we might get assertion failure or SEGV during
the type legalization of ATOMIC_CMP_SWAP_WITH_SUCCESS
with two or more illegal types.
For example, in the following sequence, both i8 and i1
might be illegal in some target, e.g. armv5, mipsel, mips64el,
%0 = cmpxchg i8* %ptr, i8 %desire, i8 %new monotonic monotonic
%1 = extractvalue { i8, i1 } %0, 1
Since both i8 and i1 should be legalized, the corresponding
ATOMIC_CMP_SWAP_WITH_SUCCESS dag will be checked/replaced/updated
twice.
If we don't update the usage to *ALL* of the results in the
first round, the DAG for extractvalue might be processed earlier.
The GetPromotedInteger() will result in assertion failure,
because its operand (i.e. the success bit of cmpxchg) is not
promoted beforehand.
llvm-svn: 213569
createBinary documented that it destroyed the parameter in error cases,
though by observation it does not. By passing the unique_ptr by value
rather than lvalue reference, callers are now explicit about passing
ownership and the function implements the documented contract. Remove
the explicit documentation, since now the behavior cannot be anything
other than what was documented, so it's redundant.
Also drops a unique_ptr::release in llvm-nm that was always run on a
null unique_ptr anyway.
llvm-svn: 213557
There are a few more cleanups to do, but I ran into some problems
with ext loads and trunc stores, when I tried to change some of the
vector loads and stores from custom to legal, so I wasn't able to
get rid of everything.
llvm-svn: 213552
We now emit this value when we need to contradict the default value. This
restores support for binutils 2.24.
When a suitable binutils has been released we can resume unconditionally
emitting .module directives. This is preferable to omitting the .module
directives since the .module directives protect against, for example,
accidentally assembling FP32 code with -mfp64 and producing an unusuable object.
llvm-svn: 213548
This implements a solution for constant initializers suggested
by Vadim Girlin, where we store the data after the shader code
and then use the S_GETPC instruction to compute its address.
This saves use the trouble of creating a new buffer for constant data
and then having to pass the pointer to the kernel via user SGPRs or the
input buffer.
llvm-svn: 213530
This abstraction allows us to support the various records that can be placed in
the .MIPS.options section in the future. We currently use it to record register
usage information (the ODK_REGINFO record in our ELF64 spec).
Each .MIPS.options record should subclass MipsOptionRecord and provide an
implementation of EmitMipsOptionRecord.
Patch by Matheus Almeida and Toma Tabacu
llvm-svn: 213522
This is useful for cases when stand-alone patterns are preferred to the
patterns included in the instruction definitions. Instead of requiring
that stand-alone patterns set a larger AddedComplexity value, which
can be confusing to new developers, the allows us to reduce the
complexity of the included patterns to achieve the same result.
llvm-svn: 213521
There were two generally-useful CaptureTracker classes defined in LLVM: the
simple tracker defined in CaptureTracking (and made available via the
PointerMayBeCaptured utility function), and the CapturesBefore tracker
available only inside of AA. This change moves the CapturesBefore tracker into
CaptureTracking, generalizes it slightly (by adding a ReturnCaptures
parameter), and makes it generally available via a PointerMayBeCapturedBefore
utility function.
This logic will be needed, for example, to perform noalias function parameter
attribute inference.
No functionality change intended.
llvm-svn: 213519
The ability to identify function locals will exist outside of BasicAA (for
example, logic for inferring noalias function arguments will need this), so
make this concept generally accessible without code duplication.
No functionality change.
llvm-svn: 213514
Fix a dangerous default case that caused MipsCodeEmitter to discard pseudo
instructions it didn't recognize. It will now call llvm_unreachable() for
unrecognized pseudo's and explicitly handles PseudoReturn, PseudoReturn64,
PseudoIndirectBranch, PseudoIndirectBranch64, CFI_INSTRUCTION, IMPLICIT_DEF,
and KILL.
There may be other pseudos that need handling but this was enough for the
ExecutionEngine tests to pass on my test system.
llvm-svn: 213513
We now emit this directive when we need to contradict the default value (e.g.
-mno-odd-spreg is given) or an option changed the default value (e.g. -mfpxx
is given).
This restores support for the currently available head of binutils. However,
at this point binutils 2.24 is still not sufficient since it does not support
'.module fp=...'.
llvm-svn: 213511
This makes the first stage DAG for @llvm.convert.to.fp16 an fptrunc,
and correspondingly @llvm.convert.from.fp16 an fpext. The legalisation
path is now uniform, regardless of the input IR:
fptrunc -> FP_TO_FP16 (if f16 illegal) -> libcall
fpext -> FP16_TO_FP (if f16 illegal) -> libcall
Each target should be able to select the version that best matches its
operations and not be required to duplicate patterns for both fptrunc
and FP_TO_FP16 (for example).
As a result we can remove some redundant AArch64 patterns.
llvm-svn: 213507
'Worklist' consistently rather than a deeply confusing mixture of
'WorkList' and 'Worklist'.
Notably, the very 'WorkList' of the DAG combiner was exposed to target
specific DAG combines under an interface 'AddToWorklist' which was
implemented by in turn calling 'AddToWorkList' in the combiner. This has
sent me circling with the wrong case in grep one too many times.
I chose to normalize on 'Worklist' because that one won the grep-vote
for llvm/lib/... by a hundered hits or so, and it is used in places
relatively "canonical" such as InstCombine's Worklist. Let's all jsut
pick this casing, whether "correct", "good", or "bad" and be
consistent...
llvm-svn: 213506
stack, filter all handle nodes from the DAG combiner worklist.
This will also handle cases where other handle nodes might be
(erroneously) added to the worklist and then cause bugs and explosions
when deleted. For example, when running the legalizer within the DAG
combiner, there are times when other handle nodes are used and can end
up here.
llvm-svn: 213505
Canonicalize shuffles according to rules:
* shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
* shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
* shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
This patch helps identifying more shuffle pairs that could be combined reusing
the already existing rules in the DAGCombiner.
Added new test 'combine-vec-shuffle-5.ll' to verify that the canonicalized
shuffles are now folded into a single shuffle node by the DAGCombiner.
Added more test cases to 'combine-vec-shuffle-4.ll'.
llvm-svn: 213504
This patch removes function 'CommuteVectorShuffle' from X86ISelLowering.cpp
and moves its logic into SelectionDAG.cpp as method 'getCommutedVectorShuffles'.
This refactoring is in preperation of an upcoming change to the DAGCombiner.
llvm-svn: 213503
This patch adds infrastructure support for passing array types
directly. These can be used by the front-end to pass aggregate
types (coerced to an appropriate array type). The details of the
array type being used inform the back-end about ABI-relevant
properties. Specifically, the array element type encodes:
- whether the parameter should be passed in FPRs, VRs, or just
GPRs/stack slots (for float / vector / integer element types,
respectively)
- what the alignment requirements of the parameter are when passed in
GPRs/stack slots (8 for float / 16 for vector / the element type
size for integer element types) -- this corresponds to the
"byval align" field
Using the infrastructure provided by this patch, a companion patch
to clang will enable two features:
- In the ELFv2 ABI, pass (and return) "homogeneous" floating-point
or vector aggregates in FPRs and VRs (this is similar to the ARM
homogeneous aggregate ABI)
- As an optimization for both ELFv1 and ELFv2 ABIs, pass aggregates
that fit fully in registers without using the "byval" mechanism
The patch uses the functionArgumentNeedsConsecutiveRegisters callback
to encode that special treatment is required for all directly-passed
array types. The isInConsecutiveRegs / isInConsecutiveRegsLast bits set
as a results are then used to implement the required size and alignment
rules in CalculateStackSlotSize / CalculateStackSlotAlignment etc.
As a related change, the ABI routines have to be modified to support
passing floating-point types in GPRs. This is necessary because with
homogeneous aggregates of 4-byte float type we can now run out of FPRs
*before* we run out of the 64-byte argument save area that is shadowed
by GPRs. Any extra floating-point arguments that no longer fit in FPRs
must now be passed in GPRs until we run out of those too.
Note that there was already code to pass floating-point arguments in
GPRs used with vararg parameters, which was done by writing the argument
out to the argument save area first and then reloading into GPRs. The
patch re-implements this, however, in favor of code packing float arguments
directly via extension/truncation, BITCAST, and BUILD_PAIR operations.
This is required to support the ELFv2 ABI, since we cannot unconditionally
write to the argument save area (which the caller might not have allocated).
The change does, however, affect ELFv1 varags routines too; but even here
the overall effect should be advantageous: Instead of loading the argument
into the FPR, then storing the argument to the stack slot, and finally
reloading the argument from the stack slot into a GPR, the new code now
just loads the argument into the FPR, and subsequently loads the argument
into the GPR (via BITCAST). That BITCAST might imply a save/reload from
a stack temporary (in which case we're no worse than before); but it
might be implemented more efficiently in some cases.
The final part of the patch enables up to 8 FPRs and VRs for argument
return in PPCCallingConv.td; this is required to support returning
ELFv2 homogeneous aggregates. (Note that this doesn't affect other ABIs
since LLVM wil only look for which register to use if the parameter is
marked as "direct" return anyway.)
Reviewed by Hal Finkel.
llvm-svn: 213493