Commit Graph

13 Commits

Author SHA1 Message Date
Michael Kruse 6744efa8d8 [ScopDetection] Only allow SCoP-wide available base pointers.
Simplify ScopDetection::isInvariant(). Essentially deny everything that
is defined within the SCoP and is not load-hoisted.

The previous understanding of "invariant" has a few holes:

- Expressions without side-effects with only invariant arguments, but
  are defined withing the SCoP's region with the exception of selects
  and PHIs. These should be part of the index expression derived by
  ScalarEvolution and not of the base pointer.

- Function calls with that are !mayHaveSideEffects() (typically
  functions with "readnone nounwind" attributes). An example is given
  below.

      @C = external global i32
      declare float* @getNextBasePtr(float*) readnone nounwind
      ...
      %ptr = call float* @getNextBasePtr(float* %A, float %B)

  The call might return:

  * %A, so %ptr aliases with it in the SCoP
  * %B, so %ptr aliases with it in the SCoP
  * @C, so %ptr aliases with it in the SCoP
  * a new pointer everytime it is called, such as malloc()
  * a pointer into the allocated block of one of the aforementioned
  * any of the above, at random at each call

  Hence and contrast to a comment in the base_pointer.ll regression
  test, %ptr is not necessarily the same all the time. It might also
  alias with anything and no AliasAnalysis can tell otherwise if the
  definition is external. It is hence not suitable in the role of a
  base pointer.

The practical problem with base pointers defined in SCoP statements is
that it is not available globally in the SCoP. The statement instance
must be executed first before the base pointer can be used. This is no
problem if the base pointer is transferred as a scalar value between
statements. Uses of MemoryAccess::setNewAccessRelation may add a use of
the base pointer anywhere in the array. setNewAccessRelation is used by
JSONImporter, DeLICM and D28518. Indeed, BlockGenerator currently
assumes that base pointers are available globally and generates invalid
code for new access relation (referring to the base pointer of the
original code) if not, even if the base pointer would be available in
the statement.

This could be fixed with some added complexity and restrictions. The
ExprBuilder must lookup the local BBMap and code that call
setNewAccessRelation must check whether the base pointer is available
first.

The code would still be incorrect in the presence of aliasing. There
is the switch -polly-ignore-aliasing to explicitly allow this, but
it is hardly a justification for the additional complexity. It would
still be mostly useless because in most cases either getNextBasePtr()
has external linkage in which case the readnone nounwind attributes
cannot be derived in the translation unit itself, or is defined in the
same translation unit and gets inlined.

Reviewed By: grosser

Differential Revision: https://reviews.llvm.org/D30695

llvm-svn: 297281
2017-03-08 15:14:46 +00:00
Michael Kruse 5a4ec5c42b [ScopDetection] Require LoadInst base pointers to be hoisted.
Only when load-hoisted we can be sure the base pointer is invariant
during the SCoP's execution. Most of the time it would be added to
the required hoists for the alias checks anyway, except with
-polly-ignore-aliasing, -polly-use-runtime-alias-checks=0 or if
AliasAnalysis is already sure it doesn't alias with anything
(for instance if there is no other pointer to alias with).

Two more parts in Polly assume that this load-hoisting took place:
- setNewAccessRelation() which contains an assert which tests this.
- BlockGenerator which would use to the base ptr from the original
  code if not load-hoisted (if the access expression is regenerated)

Differential Revision: https://reviews.llvm.org/D30694

llvm-svn: 297195
2017-03-07 20:28:43 +00:00
Johannes Doerfert 09e3697f44 Allow invariant loads in the SCoP description
This patch allows invariant loads to be used in the SCoP description,
  e.g., as loop bounds, conditions or in memory access functions.

  First we collect "required invariant loads" during SCoP detection that
  would otherwise make an expression we care about non-affine. To this
  end a new level of abstraction was introduced before
  SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and
  ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide
  if we want a load inside the region to be optimistically assumed
  invariant or not. If we do, it will be marked as required and in the
  SCoP generation we bail if it is actually not invariant. If we don't
  it will be a non-affine expression as before. At the moment we
  optimistically assume all "hoistable" (namely non-loop-carried) loads
  to be invariant. This causes us to expand some SCoPs and dismiss them
  later but it also allows us to detect a lot we would dismiss directly
  if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also
  allow potential aliases between optimistically assumed invariant loads
  and other pointers as our runtime alias checks are sound in case the
  loads are actually invariant. Together with the invariant checks this
  combination allows to handle a lot more than LICM can.

  The code generation of the invariant loads had to be extended as we
  can now have dependences between parameters and invariant (hoisted)
  loads as well as the other way around, e.g.,
    test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll
  First, it is important to note that we cannot have real cycles but
  only dependences from a hoisted load to a parameter and from another
  parameter to that hoisted load (and so on). To handle such cases we
  materialize llvm::Values for parameters that are referred by a hoisted
  load on demand and then materialize the remaining parameters. Second,
  there are new kinds of dependences between hoisted loads caused by the
  constraints on their execution. If a hoisted load is conditionally
  executed it might depend on the value of another hoisted load. To deal
  with such situations we sort them already in the ScopInfo such that
  they can be generated in the order they are listed in the
  Scop::InvariantAccesses list (see compareInvariantAccesses). The
  dependences between hoisted loads caused by indirect accesses are
  handled the same way as before.

llvm-svn: 249607
2015-10-07 20:17:36 +00:00
Tobias Grosser f4ee371e60 tests: Drop -polly-detect-unprofitable and -polly-no-early-exit
These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.

llvm-svn: 249422
2015-10-06 15:36:44 +00:00
Michael Kruse 9cc1b9d31e Clean-up unit tests
Remove redundant flags and duplicate invocations of the same test.

llvm-svn: 247285
2015-09-10 14:42:09 +00:00
Chandler Carruth 66ef16b289 [PM] Update Polly for the new AA infrastructure landed in r247167.
llvm-svn: 247198
2015-09-09 22:13:56 +00:00
Tobias Grosser 173ecab705 Remove target triples from test cases
I just learned that target triples prevent test cases to be run on other
architectures. Polly test cases are until now sufficiently target independent
to not require any target triples. Hence, we drop them.

llvm-svn: 235384
2015-04-21 14:28:02 +00:00
David Blaikie c94eca0546 Update Polly tests to handle explicitly typed load changes in LLVM.
llvm-svn: 230796
2015-02-27 21:22:50 +00:00
David Blaikie bad3ff207f Update Polly tests to handle explicitly typed gep changes in LLVM
llvm-svn: 230784
2015-02-27 19:20:19 +00:00
Tobias Grosser d1e33e7061 ScopDetection: Only detect scops that have at least one read and one write
Scops that only read seem generally uninteresting and scops that only write are
most likely initializations where there is also little to optimize.  To not
waste compile time we bail early.

Differential Revision: http://reviews.llvm.org/D7735

llvm-svn: 229820
2015-02-19 05:31:07 +00:00
Tobias Grosser 683b8e4462 Remove -polly-codegen-scev option and related code
SCEV based code generation has been the default for two weeks after having
been tested for a long time. We now drop the support the non-scev-based code
generation.

llvm-svn: 222978
2014-11-30 14:33:31 +00:00
Tobias Grosser 458fb78cfa Check if array base addresses are invariant
Array base addresses need to be invariant in the region considered. The base
address has to be computed outside the region, or, when it is computed inside,
the value must not change with the iterations of the loops. For example, when a
two-dimensional array is represented as a pointer to pointers the base address
A[i] in an access A[i][j] changes with i; therefore, such regions have to be
rejected.

Contributed by:  Armin Größlinger <armin.groesslinger@uni-passau.de>

llvm-svn: 200314
2014-01-28 12:58:58 +00:00
Tobias Grosser 5b5daab9f1 Add more test cases to check loop invariance of the base pointer.
llvm-svn: 200305
2014-01-28 10:29:17 +00:00