Use ScalarEvolution's getBackedgeTakenCount API instead of getExitCount since
that is really what we want to know. Using the more specific getExitCount was
safe because we made sure that there is only one exiting block.
No functionality change.
llvm-svn: 183047
Account for the cost of scaling factor in Loop Strength Reduce when rating the
formulae. This uses a target hook.
The default implementation of the hook is: if the addressing mode is legal, the
scaling factor is free.
<rdar://problem/13806271>
llvm-svn: 183045
We check that instructions in the loop don't have outside users (except if
they are reduction values). Unfortunately, we skipped this check for
if-convertable PHIs.
Fixes PR16184.
llvm-svn: 183035
Namely, check if the target allows to fold more that one register in the
addressing mode and if yes, adjust the cost accordingly.
Prior to this commit, reg1 + scale * reg2 accesses were artificially preferred
to reg1 + reg2 accesses. Indeed, the cost model wrongly assumed that reg1 + reg2
needs a temporary register for the computation, whereas it was correctly
estimated for reg1 + scale * reg2.
<rdar://problem/13973908>
llvm-svn: 183021
NOTE: If this broke your out-of-tree backend, in *RegisterInfo.td, change
the instances of SubRegIndex that have a comps template arg to use the
ComposedSubRegIndex class instead.
In TableGen land, this adds Size and Offset attributes to SubRegIndex,
and the ComposedSubRegIndex class, for which the Size and Offset are
computed by TableGen. This also adds an accessor in MCRegisterInfo, and
Size/Offsets for the X86 and ARM subreg indices.
llvm-svn: 183020
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
llvm-svn: 183011
The disassembly of VEXT instructions was too lax in the bits checked. This
fixes the case where the instruction affects Q-registers but a misaligned lane
was specified (should be UNDEFINED).
Patch by Amaury de la Vieuville
llvm-svn: 183003
Unlike most -- hopefully "all other", but I'm still checking -- memory
instructions we support, LOAD REVERSED and STORE REVERSED may access
the memory location several times. This means that they are not suitable
for volatile loads and stores.
This patch is a prerequisite for better atomic load and store support.
The same principle applies there: almost all memory instructions we
support are inherently atomic ("block concurrent"), but LOAD REVERSED
and STORE REVERSED are exceptions.
Other instructions continue to allow volatile operands. I will add
positive "allows volatile" tests at the same time as the "allows atomic
load or store" tests.
llvm-svn: 183002
Now that 3.3 is branched, we are re-enabling virtual registers to help
iron out bugs before the next release. Some of the post-RA passes do
not play well with virtual registers, so we disable them for now. The
needed functionality of the PrologEpilogInserter pass is copied to a
new backend-specific NVPTXPrologEpilog pass.
The test for this commit is not breaking the existing tests.
llvm-svn: 182998
Before this change, each module defined a weak_odr global __msan_track_origins
with a value of 1 if origin tracking is enabled, 0 if disabled. If there are
modules with different values, any of them may win. If 0 wins, and there is at
least one module with 1, the program will most likely crash.
With this change, __msan_track_origins is only emitted if origin tracking is
on. Then runtime library detects if there is at least one module with origin
tracking, and enables runtime support for it.
llvm-svn: 182997
The MOV64ri64i32 instruction required hacky MCInst lowering because it was
allocated as setting a GR64, but the eventual instruction ("movl") only set a
GR32. This converts it into a so-called "MOV32ri64" which still accepts a
(appropriate) 64-bit immediate but defines a GR32. This is then converted to
the full GR64 by a SUBREG_TO_REG operation, thus keeping everyone happy.
llvm-svn: 182991
Fixes PR16130 - clang produces incorrect code with loop/expression at -O2.
This is a 2+ year old bug that's now holding up the release. It's a
case where we knowingly made aggressive assumptions about undefined
behavior. These assumptions are wrong when SCEV is computing a
subexpression that does not directly control the branch. With this
fix, we avoid making assumptions in those cases but still optimize the
common case. SCEV's trip count computation for exits controlled by
'or' expressions is now analagous to the trip count computation for
loops with multiple exits. I had already fixed the multiple exit case
to be conservative.
llvm-svn: 182989
Instead of having a bunch of separate MOV8r0, MOV16r0, ... pseudo-instructions,
it's better to use a single MOV32r0 (which will expand to "xorl %reg, %reg")
and obtain other sizes with EXTRACT_SUBREG and SUBREG_TO_REG. The encoding is
smaller and partial register updates can sometimes be avoided.
Until recently, this sequence was a barrier to rematerialization though. That
should now be fixed so it's an appropriate time to make the change.
llvm-svn: 182928
r182872 introduced a bug in how the register-coalescer's rematerialization
handled defining a physical register. It relied on the output of the
coalescer's setRegisters method to determine whether the replacement
instruction needed an implicit-def. However, this value isn't necessarily the
same as the CopyMI's actual destination register which is what the rest of the
basic-block expects us to be defining.
The commit changes the rematerializer to use the actual register attached to
CopyMI in its decision.
This will be tested soon by an X86 patch which moves everything to using
MOV32r0 instead of other sizes.
llvm-svn: 182925
32-bit writes on amd64 zero out the high bits of the corresponding 64-bit
register. LLVM makes use of this for zero-extension, but until now relied on
custom MCLowering and other code to fixup instructions. Now we have proper
handling of sub-registers, this can be done by creating SUBREG_TO_REG
instructions at selection-time.
Should be no change in functionality.
llvm-svn: 182921
The code to distinguish between unaligned and aligned addresses was
already there, so this is mostly just a switch-on-and-test process.
llvm-svn: 182920
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
llvm-svn: 182908
Fixes PR16146: gdb.base__call-ar-st.exp fails after
pre-RA-sched=source fixes.
Patch by Xiaoyi Guo!
This also fixes an unsupported dbg.value test case. Codegen was
previously incorrect but the test was passing by luck.
llvm-svn: 182885
This corrects a problem where x86 instructions that implicitly define/use both
an A-register (RAX, EAX, ..) and EFLAGS were declared as only defining/using
EFLAGS, because the outer "let Defs/Uses = [EFLAGS]" in the various multiclasses
overrides the "let Defs/Uses = [areg]" in BinOpAI.
The instructions deriving from BinOpAI were moved out of the "let Defs", and a
BinOpAI_FF class was created, for instructions that implicitly define and use
EFLAGS and the A-register (SBC, ADC).
llvm-svn: 182883
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of test-suite on A15 hardware with --optimize-option=-O0 and
all the tests pass.
llvm-svn: 182877
This allows rematerialization during register coalescing to handle
more cases involving operations like SUBREG_TO_REG which might need to
be rematerialized using sub-register indices.
For example, code like:
v1(GPR64):sub_32 = MOVZ something
v2(GPR64) = COPY v1(GPR64)
should be convertable to:
v2(GPR64):sub_32 = MOVZ something
but previously we just gave up in places like this
llvm-svn: 182872
Since the testing case uses ref_addr, which requires version 3+ to work,
we will solve the dwarf version issue first.
This patch also causes failures in one of the bots. I will update the patch
accordingly in my next attempt.
rdar://13926659
llvm-svn: 182867
Tidy up three places where the register class for ARM and Thumb wasn't
restrictive enough:
- No PC dest for reg-reg add/orr/sub.
- No PC dest for shifts.
- No PC or SP for Thumb2 reg-imm add.
I encountered this while combining FastISel with
-verify-machineinstrs. These instructions defined registers whose
classes weren't restrictive enough, and the uses failed
verification. They're also undefined in the ISA, or would produce code
that FastISel wouldn't want. This doesn't fix the register class
narrowing issue (where uses should restrict definitions), and isn't
thorough, but it's a small step in the right direction.
llvm-svn: 182863
This patch solves the problem of numeric register values not being accepted:
../set_alias.s:1:11: error: expected valid expression after comma
.set r4,$4
^
The parsing of .set directive is changed and handling of symbols in code
as well to enable this feature.
The test example is added.
Patch by Vladimir Medic
llvm-svn: 182807
- llvm.loop.parallel metadata has been renamed to llvm.loop to be more generic
by making the root of additional loop metadata.
- Loop::isAnnotatedParallel now looks for llvm.loop and associated
llvm.mem.parallel_loop_access
- document llvm.loop and update llvm.mem.parallel_loop_access
- add support for llvm.vectorizer.width and llvm.vectorizer.unroll
- document llvm.vectorizer.* metadata
- add utility class LoopVectorizerHints for getting/setting loop metadata
- use llvm.vectorizer.width=1 to indicate already vectorized instead of
already_vectorized
- update existing tests that used llvm.loop.parallel and
llvm.vectorizer.already_vectorized
Reviewed by: Nadav Rotem
llvm-svn: 182802
Previously we would read-modify-write the target bits when processing
relocations for the MCJIT. This had the problem that when relocations
were processed multiple times for the same object file (as they can
be), the result is not idempotent and the values became corrupted.
The solution to this is to take any bits used in the destination from
the pristine object file as LLVM emitted it.
This should fix PR16013 and remote MCJIT on ARM ELF targets.
llvm-svn: 182800
from a different CU.
We used to print out an error message and fail to generate inlined_subroutine.
If we use ref_addr in the generated DWARF, the DWARF version should be 3 or
above.
rdar://13926659
llvm-svn: 182791
Extend LinkModules to pass a ValueMaterializer to RemapInstruction and friends to lazily create Functions for lazily linked globals. This is a big win when linking small modules with large (mostly unused) library modules.
llvm-svn: 182776
This patch adds support for the CRJ and CGRJ instructions. Support for
the immediate forms will be a separate patch.
The architecture has a large number of comparison instructions. I think
it's generally better to concentrate on using the "best" comparison
instruction first and foremost, then only use something like CRJ if
CR really was the natual choice of comparison instruction. The patch
therefore opportunistically converts separate CR and BRC instructions
into a single CRJ while emitting instructions in ISelLowering.
llvm-svn: 182764
When -ffast-math is in effect (on Linux, at least), clang defines
__FINITE_MATH_ONLY__ > 0 when including <math.h>. This causes the
preprocessor to include <bits/math-finite.h>, which renames the sqrt functions.
For instance, "sqrt" is renamed as "__sqrt_finite".
This patch adds the 3 new names in such a way that they will be treated
as equivalent to their respective original names.
llvm-svn: 182739
isConsecutiveLS is a slightly more general form of
SelectionDAG::isConsecutiveLoad. Aside from also handling stores, it also does
not assume equality of the chain operands is necessary. In the case of the PPC
backend, this chain condition is checked in a more general way by the
surrounding code.
Mostly, this part of the refactoring in preparation for supporting optimized
unaligned stores.
llvm-svn: 182723
When expanding unaligned Altivec loads, we use the decremented offset trick to
prevent page faults. Unfortunately, if we have a sequence of consecutive
unaligned loads, this leads to suboptimal code generation because the 'extra'
load from the first unaligned load can be combined with the base load from the
second (but only if the decremented offset trick is not used for the first).
Search up and down the chain, through loads and token factors, looking for
consecutive loads, and if one is found, don't use the offset reduction trick.
These duplicate loads are later combined to yield the desired sequence (in the
future, we might want a more-powerful chain search, but that will require some
changes to allow the combiner routines to access the AA object).
This should complete the initial implementation of the optimized unaligned
Altivec load expansion. There is some refactoring that should be done, but
that will happen when the unaligned store expansion is added.
llvm-svn: 182719
The lvsl permutation control instruction is a function only of the alignment of
the pointer operand (relative to the 16-byte natural alignment of Altivec
vectors). As a result, multiple lvsl intrinsics where the operands differ by a
multiple of 16 can be combined.
llvm-svn: 182708
Use a field in the SelectionDAGNode object to track its IR ordering.
This adds fields and utility classes without changing existing
interfaces or functionality.
llvm-svn: 182701
Altivec only directly supports aligned loads, but the loads have a strange
property: If given an unaligned address, they truncate the address to the next
lower aligned address, and load from there. This property, along with an extra
load and some special-purpose permutation-control instructions that generate
the appropriate permutations from the original unaligned address, allow
efficient lowering of aligned loads. This code uses the trick explained in the
Apple Velocity Engine optimization overview document to prevent the needed
extra load from possibly causing a page fault if the original address happens
to be aligned.
As noted in the FIXMEs, there are several additional optimizations that can be
performed to reduce the cost of these loads even more. These will be
implemented in future commits.
llvm-svn: 182691
Previously, an invalid instruction like:
foo %r1, %r0
would generate the rather odd error message:
....: error: unknown token in expression
foo %r1, %r0
^
We now get the more informative:
....: error: invalid instruction
foo %r1, %r0
^
The same would happen if an address were used where a register was expected.
We now get "invalid operand for instruction" instead.
llvm-svn: 182644
The idea is to make sure that:
(1) "register expected" is restricted to cases where ParseRegister()
is called and the token obviously isn't a register.
(2) "invalid register" is restricted to cases where a register-like "%..."
sequence is found, but the "..." makes no sense.
(3) the generic "invalid operand for instruction" is used in cases where
the wrong register type is used (GPR instead of FPR, etc.).
(4) the new "invalid register pair" is used if the register has the right type,
but is not a valid register pair.
Testing of (1)-(3) is now restricted to regs-bad.s. It uses a representative
instruction for each register class to make sure that only registers from
that class are accepted.
(4) is tested by both regs-bad.s (which checks all invalid register pairs)
and insn-bad.s (which tests one invalid pair for each instruction that
requires a pair).
While there, I changed "Number" to "Num" for consistency with the
operand class.
llvm-svn: 182643
as the BinaryOperator, *not* in the block where the IRBuilder is currently
inserting into. Fixes a bug where scalarizePHI would create instructions
that would not dominate all uses.
llvm-svn: 182639
Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.
Added analysis and code generation tests. Added documentation for the
new attribute.
llvm-svn: 182638
There was exactly one caller using this API right, the others were relying on
specific behavior of the default implementation. Since it's too hard to use it
right just remove it and standardize on the default behavior.
Defines away PR16132.
llvm-svn: 182636
In these builds, the asserts() are completely compiled out of the code
leaving "End" unused. Directly accessing it, should not have a
performance impact, as it is just a data member.
llvm-svn: 182634
This patch builds on some existing code to do CFG reconstruction from
a disassembled binary:
- MCModule represents the binary, and has a list of MCAtoms.
- MCAtom represents either disassembled instructions (MCTextAtom), or
contiguous data (MCDataAtom), and covers a specific range of addresses.
- MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is
backed by an MCTextAtom, and has the usual successors/predecessors.
- MCObjectDisassembler creates a module from an ObjectFile using a
disassembler. It first builds an atom for each section. It can also
construct the CFG, and this splits the text atoms into basic blocks.
MCModule and MCAtom were only sketched out; MCFunction and MCBB were
implemented under the experimental "-cfg" llvm-objdump -macho option.
This cleans them up for further use; llvm-objdump -d -cfg now generates
graphviz files for each function found in the binary.
In the future, MCObjectDisassembler may be the right place to do
"intelligent" disassembly: for example, handling constant islands is just
a matter of splitting the atom, using information that may be available
in the ObjectFile. Also, better initial atom formation than just using
sections is possible using symbols (and things like Mach-O's
function_starts load command).
This brings two minor regressions in llvm-objdump -macho -cfg:
- The printing of a relocation's referenced symbol.
- An annotation on loop BBs, i.e., which are their own successor.
Relocation printing is replaced by the MCSymbolizer; the basic CFG
annotation will be superseded by more related functionality.
llvm-svn: 182628
This is a basic first step towards symbolization of disassembled
instructions. This used to be done using externally provided (C API)
callbacks. This patch introduces:
- the MCSymbolizer class, that mimics the same functions that were used
in the X86 and ARM disassemblers to symbolize immediate operands and
to annotate loads based off PC (for things like c string literals).
- the MCExternalSymbolizer class, which implements the old C API.
- the MCRelocationInfo class, which provides a way for targets to
translate relocations (either object::RelocationRef, or disassembler
C API VariantKinds) to MCExprs.
- the MCObjectSymbolizer class, which does symbolization using what it
finds in an object::ObjectFile. This makes simple symbolization (with
no fancy relocation stuff) work for all object formats!
- x86-64 Mach-O and ELF MCRelocationInfos.
- A basic ARM Mach-O MCRelocationInfo, that provides just enough to
support the C API VariantKinds.
Most of what works in otool (the only user of the old symbolization API
that I know of) for x86-64 symbolic disassembly (-tvV) works, namely:
- symbol references: call _foo; jmp 15 <_foo+50>
- relocations: call _foo-_bar; call _foo-4
- __cf?string: leaq 193(%rip), %rax ## literal pool for "hello"
Stub support is the main missing part (because libObject doesn't know,
among other things, about mach-o indirect symbols).
As for the MCSymbolizer API, instead of relying on the disassemblers
to call the tryAdding* methods, maybe this could be done automagically
using InstrInfo? For instance, even though PC-relative LEAs are used
to get the address of string literals in a typical Mach-O file, a MOV
would be used in an ELF file. And right now, the explicit symbolization
only recognizes PC-relative LEAs. InstrInfo should have already have
most of what is needed to know what to symbolize, so this can
definitely be improved.
I'd also like to remove object::RelocationRef::getValueString (it seems
only used by relocation printing in objdump), as simply printing the
created MCExpr is definitely enough (and cleaner than string concats).
llvm-svn: 182625
Now that there is no longer any distinction between symbolLo
and symbolHi operands in either printing, encoding, or parsing,
the operand types can be removed in favor of simply using
s16imm.
This completes the patch series to decouple lo/hi operand part
processing from the particular instruction whose operand it is.
No change in code generation expected from this patch.
llvm-svn: 182618
- move AsmWriter.h from public headers into lib
- marked all AssemblyWriter functions as non-virtual; no need to override them
- DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper
- exposed flags to control hiding of a) debug metadata b) debug intrinsic calls
C/R: Paul Redmond
llvm-svn: 182617