1) When we do an instantiation of the injected-class-name type,
provide a proper source location. This is just plain good hygiene.
2) When we're building a NestedNameSpecifierLoc from a CXXScopeSpec,
only return an empty NestedNameSpecifierLoc if there's no
representation.
Both problems contributed to the horrible test case in PR9390 that I
couldn't reduce down to something palatable.
llvm-svn: 126961
UnresolvedUsingValueDecl to use NestedNameSpecifierLoc rather than the
extremely-lossy NestedNameSpecifier/SourceRange pair it used to use,
improving source-location information.
Various infrastructure updates to support NestedNameSpecifierLoc:
- AST/PCH (de-)serialization
- Recursive AST visitor
- libclang traversal (including the first tests of this
functionality)
llvm-svn: 126459
nested-name-specifiers throughout the parser, and provide a new class
(NestedNameSpecifierLoc) that contains a nested-name-specifier along
with its type-source information.
Right now, this information is completely useless, because we don't
actually store the source-location information anywhere in the
AST. Call this Step 1/N.
llvm-svn: 126391
making them be template instantiated in a more normal way and
make them handle attributes like other decls.
This fixes the used/unused label handling stuff, making it use
the same infrastructure as other decls.
llvm-svn: 125771
access-control diagnostics which arise from the portion of the declarator
following the scope specifier, just in case access is granted by
friending the individual method. This can also happen with in-line
member function declarations of class templates due to templated-scope
friend declarations.
We were really playing fast-and-loose before with this sort of thing,
and it turned out to work because *most* friend functions are in file
scope. Making us delay regardless of context exposed several bugs with
how we were manipulating delay. I ended up needing a concept of a
context that's independent of the declarations in which it appears,
and then I actually had to make some things save contexts correctly,
but delay should be much cleaner now.
I also encapsulated all the delayed-diagnostics machinery in a single
subobject of Sema; this is a pattern we might want to consider rolling
out to other components of Sema.
llvm-svn: 125485
extremely rambunctious, both on parsing and on template instantiation.
Calm it down, fixing an internal consistency assert on anonymous enum
instantiation manglings.
llvm-svn: 124653
a pack expansion, e.g., the parameter pack Values in:
template<typename ...Types>
struct Outer {
template<Types ...Values>
struct Inner;
};
This new implementation approach introduces the notion of an
"expanded" non-type template parameter pack, for which we have already
expanded the types of the parameter pack (to, say, "int*, float*",
for Outer<int*, float*>) but have not yet expanded the values. Aside
from creating these expanded non-type template parameter packs, this
patch updates template argument checking and non-type template
parameter pack instantiation to make use of the appropriate types in
the parameter pack.
llvm-svn: 123845
expansion in it, we may end up instantiating to an empty
expression-list. In this case, the variable is uninitialized; tweak
the instantiation logic to handle this case. Fixes PR8977.
llvm-svn: 123449
expansion, when it is known due to the substitution of an out
parameter pack. This allows us to properly handle substitution into
pack expansions that involve multiple parameter packs at different
template parameter levels, even when this substitution happens one
level at a time (as with partial specializations of member class
templates and the signatures of member function templates).
Note that the diagnostic we provide when there is an arity mismatch
between an outer parameter pack and an inner parameter pack in this
case isn't as clear as the normal diagnostic for an arity
mismatch. However, this doesn't matter because these cases are very,
very rare and (even then) only typically occur in a SFINAE context.
The other kinds of pack expansions (expression, template, etc.) still
need to support optional tracking of the number of expansions, and we
need the moral equivalent of SubstTemplateTypeParmPackType for
substituted argument packs of template template and non-type template
parameters.
llvm-svn: 123448
parameters it expanded to, map exactly the number of function
parameters that were expanded rather than just running to the end of
the instantiated parameter list. This finishes the implementation of
the last sentence of C++0x [temp.deduct.call]p1.
llvm-svn: 123213
sentence of [temp.deduct.call]p1, both of which concern the
non-deducibility of parameter packs not at the end of a
parameter-type-list. The latter isn't fully implemented yet; see the
new FIXME.
llvm-svn: 123210
allows an argument pack determines via explicit specification of
function template arguments to be extended by further, deduced
arguments. For example:
template<class ... Types> void f(Types ... values);
void g() {
f<int*, float*>(0, 0, 0); // Types is deduced to the sequence int*, float*, int
}
There are a number of FIXMEs in here that indicate places where we
need to implement + test retained expansions, plus a number of other
places in deduction where we need to correctly cope with the
explicitly-specified arguments when deducing an argument
pack. Furthermore, it appears that the RecursiveASTVisitor needs to be
auditied; it's missing some traversals (especially w.r.t. template
arguments) that cause it not to find unexpanded parameter packs when
it should.
The good news, however, is that the tr1::tuple implementation now
works fully, and the tr1::bind example (both from N2080) is actually
working now.
llvm-svn: 123163
TreeTransform version of TransformExprs() rather than explicit loop,
so that we expand pack expansions properly. Test cast coming soon...
llvm-svn: 123014
packs, e.g.,
template<typename T, unsigned ...Dims> struct multi_array;
along with semantic analysis support for finding unexpanded non-type
template parameter packs in types, expressions, and so on.
Template instantiation involving non-type template parameter packs
probably doesn't work yet. That'll come soon.
llvm-svn: 122527
pattern is a template argument, which involves repeatedly deducing
template arguments using the pattern of the pack expansion, then
bundling the resulting deductions into an argument pack.
We can now handle a variety of simple list-handling metaprograms using
variadic templates. See, e.g., the new "count" metaprogram.
llvm-svn: 122439
class to be passed around. The line between argument and return types and
everything else is kindof vague, but I think it's justifiable.
llvm-svn: 121752
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
a useful template instantiation stack. Fixes PR8640.
This also causes a slight change to where the "instantianted from" note shows up
in truly esoteric cases (see the change to test/SemaCXX/destructor.cpp), but
that isn't directly the fault of this patch.
llvm-svn: 120135
A new AST node is introduced:
def IndirectField : DDecl<Value>;
IndirectFields are injected into the anonymous's parent scope and chain back to
the original field. Name lookup for anonymous entities now result in an
IndirectFieldDecl instead of a FieldDecl.
There is no functionality change, the code generated should be the same.
llvm-svn: 119919
in the order they occur within the class template, delaying
out-of-line member template partial specializations until after the
class has been fully instantiated. This fixes a regression introduced
by r118454 (itself a fix for PR8001).
llvm-svn: 118704
abstractions (e.g., TemplateArgumentListBuilder) that were designed to
support variadic templates. Only a few remnants of variadic templates
remain, in the parser (parsing template type parameter packs), AST
(template type parameter pack bits and TemplateArgument::Pack), and
Sema; these are expected to be used in a future implementation of
variadic templates.
But don't get too excited about that happening now.
llvm-svn: 118385
of its parent context, be sure to update the parent-context pointer
after instantiation. Fixes two anonymous-union instantiation issues in
<rdar://problem/8635664>.
llvm-svn: 118313
construct an unsupported friend when there's a friend with a templated
scope specifier. Fixes a consistency crash, rdar://problem/8540527
llvm-svn: 116786
one of them) was causing a series of failures:
http://google1.osuosl.org:8011/builders/clang-x86_64-darwin10-selfhost/builds/4518
svn merge -c -114929 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114929 into '.':
U include/clang/Sema/Sema.h
U include/clang/AST/DeclCXX.h
U lib/Sema/SemaDeclCXX.cpp
U lib/Sema/SemaTemplateInstantiateDecl.cpp
U lib/Sema/SemaDecl.cpp
U lib/Sema/SemaTemplateInstantiate.cpp
U lib/AST/DeclCXX.cpp
svn merge -c -114925 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114925 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/AST/DeclCXX.cpp
svn merge -c -114924 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114924 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/Sema/SemaDecl.cpp
G lib/AST/DeclCXX.cpp
U lib/AST/ASTContext.cpp
svn merge -c -114921 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114921 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/Sema/SemaDecl.cpp
G lib/AST/DeclCXX.cpp
llvm-svn: 114933
HasTrivialConstructor, HasTrivialCopyConstructor,
HasTrivialCopyAssignment, and HasTrivialDestructor bits in
CXXRecordDecl's methods. This completes all but the Abstract bit and
the set of conversion functions, both of which will require a bit of
extra work. The majority of <rdar://problem/8459981> is now
implemented (but not all of it).
llvm-svn: 114929
the cleanup might not be dominated by the allocation code.
In this case, we have to store aside all the delete arguments
in case we need them later. There's room for optimization here
in cases where we end up not actually needing the cleanup in
different branches (or being able to pop it after the
initialization code).
Also make sure we only call this operator delete along the path
where we actually allocated something.
Fixes rdar://problem/8439196.
llvm-svn: 114145
with comma-separated lists. We never actually used the comma
locations, nor did we store them in the AST, but we did manage to
waste time during template instantiation to produce fake locations.
llvm-svn: 113495
of that parameter, reduce the level by the number of active template
argument lists rather than by 1. The number of active template
argument lists is only > 1 when we have a class template partial
specialization of a member template of a class template that itself is
a member template of another class template.
... and Boost.MSM does this. Fixes PR7669.
llvm-svn: 112551
namely when the friend function prototype is already used
at the point of the template definition that is supposed
to inject the friend function. Testcase verifies four
scenarios.
I would like receive some code review for this.
llvm-svn: 112524
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244
templates when only the declaration is in scope. This requires deferring the
instantiation to be lazy, and ensuring the definition is required for that
translation unit. We re-use the existing pending instantiation queue,
previously only used to track implicit instantiations which were required to be
lazy. Fixes PR7979.
A subsequent change will rename *PendingImplicitInstantiations to
*PendingInstatiations for clarity given its broader role.
llvm-svn: 112037
Now all classes derived from Attr are generated from TableGen.
Additionally, Attr* is no longer its own linked list; SmallVectors or
Attr* are used. The accompanying LLVM commit contains the updates to
TableGen necessary for this.
Some other notes about newly-generated attribute classes:
- The constructor arguments are a SourceLocation and a Context&,
followed by the attributes arguments in the order that they were
defined in Attr.td
- Every argument in Attr.td has an appropriate accessor named getFoo,
and there are sometimes a few extra ones (such as to get the length
of a variadic argument).
Additionally, specific_attr_iterator has been introduced, which will
iterate over an AttrVec, but only over attributes of a certain type. It
can be accessed through either Decl::specific_attr_begin/end or
the global functions of the same name.
llvm-svn: 111455
Unused warnings for functions:
-static functions
-functions in anonymous namespace
-class methods in anonymous namespace
-class method specializations in anonymous namespace
-function specializations in anonymous namespace
Unused warnings for variables:
-static variables
-variables in anonymous namespace
-static data members in anonymous namespace
-static data members specializations in anonymous namespace
Reveals lots of opportunities for dead code removal in llvm codebase that will
interest my esteemed colleagues.
llvm-svn: 111086
-static variables
-variables in anonymous namespace (fixes rdar://7794535)
-static data members in anonymous namespace
-static data members specializations in anonymous namespace
llvm-svn: 111027
-static function declarations
-functions in anonymous namespace
-class methods in anonymous namespace
-class method specializations in anonymous namespace
-function specializations in anonymous namespace
llvm-svn: 111026
FunctionTemplateDecl::findSpecialization.
Redeclarations of specializations will not cause the previous decl to be removed from the set,
the set will keep the canonical decl. findSpecialization will return the most recent redeclaration.
llvm-svn: 108834
leaks though) and add methods to its interface for adding/finding specializations.
Simplifies its users a bit and we no longer need to replace specializations in the folding set with
their redeclarations. We just return the most recent redeclarations.
As a bonus, it fixes http://llvm.org/PR7670.
llvm-svn: 108832
The rationale is that we are copying the entire definition including
parameter names which may differ between the declaration and the
definition.
This is particularly important if any parameters are unnamed in the
declaration, as a DeclRef to an unnamed ParmVarDecl would cause the
pretty printer to produce invalid output.
llvm-svn: 108643
current attribute system, but it is enough to handle class templates which
specify parts of their alignment in terms of their template parameters.
This also replaces the attributes test in SemaTemplate with one that actually
tests working attributes instead of broken ones. I plan to add more tests here
for non-dependent attributes in a subsequent patch.
Thanks to John for walking me through some of this. =D
llvm-svn: 106818
attribute as part of the calculation. Sema::MarkDeclReferenced(), and
a few other places, want only to consider the "used" bit to determine,
e.g, whether to perform template instantiation. Fixes a linkage issue
with Boost.Serialization.
llvm-svn: 106252
The macros required for DeclNodes use have changed to match the use of
StmtNodes. The FooFirst enumerator constants have been named firstFoo
to match usage elsewhere.
llvm-svn: 105165
sure that the anonymous struct/union record declaration gets
instantiated before the variable declaration, and that it and its
fields (recursively) get entries in the local instantiation map. Fixes
PR7088.
llvm-svn: 104305
Revert much of the implementation of C++98/03 [temp.friend]p5 in
r103943 and its follow-ons r103948 and r103952. While our
implementation was technically correct, other compilers don't seem to
implement this paragraph (which forces the instantiation of friend
functions defined in a class template when a class template
specialization is instantiated), and doing so broke a bunch of Boost
libraries.
Since this behavior has changed in C++0x (which instantiates the
friend function definitions when they are used), we're going to skip
the nowhere-implemented C++98/03 semantics and go straight to the
C++0x semantics.
This commit is a band-aid to get Boost up and running again. It
doesn't really fix PR6952 (which this commit un-fixes), but it does
deal with the way Boost.Units abuses this particular paragraph.
llvm-svn: 104014
within class templates be instantiated along with each class template
specialization, even if the functions are not used. Do so, as a baby
step toward PR6952.
llvm-svn: 103943
particular, don't complain about unused variables that have dependent
type until instantiation time, so that we can look at the type of the
variable. Moreover, only complain about unused variables that have
neither a user-declared constructor nor a non-trivial destructor.
llvm-svn: 103362
different tag kind ("struct" vs. "class") than the primary template,
which has an affect on access control.
Should fix the last remaining Boost.Accumulors failure.
llvm-svn: 103144
typedef int functype(int, int);
functype func;
also instantiate the synthesized function parameters for the resulting
function declaration.
With this change, Boost.Wave builds and passes all of its regression
tests.
llvm-svn: 103025
friend function template, be sure to adjust the computed template
argument lists based on the location of the definition of the function
template: it's possible that the definition we're instantiating with
and the template declaration that we found when creating the
specialization are in different contexts, which meant that we would
end up using the wrong template arguments for instantiation.
Fixes PR7013; all Boost.DynamicBitset tests now pass.
llvm-svn: 102974
mapping from the declaration in the template to the instantiated
declaration before transforming the initializer, in case some crazy
lunatic decides to use a variable in its own initializer. Fixes PR7016.
llvm-svn: 102945
of the mapping from local declarations to their instantiated
counterparts during template instantiation. Previously, we tried to do
some unholy merging of local instantiation scopes that involved
storing a single hash table along with an "undo" list on the
side... which was ugly, and never handled function parameters
properly.
Now, we just keep separate hash tables for each local instantiation
scope, and "combining" two scopes means that we'll look in each of the
combined hash tables. The combined scope stack is rarely deep, and
this makes it easy to avoid the "undo" issues we were hitting. Also,
I've simplified the logic for function parameters: if we're declaring
a function and we need the function parameters to live longer, we just
push them back into the local instantiation scope where we need them.
Fixes PR6990.
llvm-svn: 102732
specializations, which keeps track of the order in which they were
originally declared. We use this number so that we can always walk the
list of partial specializations in a predictable order during matching
or template instantiation. This also fixes a failure in Boost.Proto,
where SourceManager::isBeforeInTranslationUnit was behaving
poorly in inconsistent ways.
llvm-svn: 102693
of a class template or class template partial specialization. That is to
say, in
template <class T> class A { ... };
or
template <class T> class B<const T*> { ... };
make 'A<T>' and 'B<const T*>' sugar for the corresponding InjectedClassNameType
when written inside the appropriate context. This allows us to track the
current instantiation appropriately even inside AST routines. It also allows
us to compute a DeclContext for a type much more efficiently, at some extra
cost every time we write a template specialization (which can be optimized,
but I've left it simple in this patch).
llvm-svn: 102407
function declaration, since it may end up being changed (e.g.,
"extern" can become "static" if a prior declaration was static). Patch
by Enea Zaffanella and Paolo Bolzoni.
llvm-svn: 101826
function's type is (strictly speaking) non-dependent. This ensures
that, e.g., default function arguments get instantiated properly.
And, since I couldn't resist, collapse the two implementations of
function-parameter instantiation into calls to a single, new function
(Sema::SubstParmVarDecl), since the two had nearly identical code (and
each had bugs the other didn't!). More importantly, factored out the
semantic analysis of a parameter declaration into
Sema::CheckParameter, which is called both by
Sema::ActOnParamDeclarator (when parameters are parsed) and when a
parameter is instantiated. Previously, we were missing some
Objective-C and address-space checks on instantiated function
parameters.
Fixes PR6733.
llvm-svn: 101029
<tr1/hashtable> header, where a friend class template
std::tr1::__detail::_Map_base is declared with the wrong template
parameters. GCC doesn't catch the problem, so Clang does a little
back-flip to avoid diagnosing just this one instance of the problem.
llvm-svn: 100790
- When instantiating a friend type template, perform semantic
analysis on the resulting type.
- Downgrade the errors concerning friend type declarations that do
not refer to classes to ExtWarns in C++98/03. C++0x allows
practically any type to be befriended, and ignores the friend
declaration if the type is not a class.
llvm-svn: 100635
nested-name-specifier (e.g., "class T::foo") fails to find a tag
member in the scope nominated by the
nested-name-specifier. Previously, we gave a bland
error: 'Nested' does not name a tag member in the specified scope
which didn't actually say where we were looking, which was rather
horrible when the nested-name-specifier was instantiated. Now, we give
something a bit better:
error: no class named 'Nested' in 'NoDepBase<T>'
llvm-svn: 100060
This introduces FunctionType::ExtInfo to hold the calling convention and the
noreturn attribute. The next patch will extend it to include the regparm
attribute and fix the bug.
llvm-svn: 99920
the redeclaration chain. Recommitted from r99477 with a fix: we need to
merge in default template arguments from previous declarations.
llvm-svn: 99496
buildbot. The tramp3d test fails.
--- Reverse-merging r99477 into '.':
U test/SemaTemplate/friend-template.cpp
U test/CXX/temp/temp.decls/temp.friend/p1.cpp
U lib/Sema/SemaTemplateInstantiateDecl.cpp
U lib/Sema/SemaAccess.cpp
llvm-svn: 99481
templates. So delay access-control diagnostics when (for example) the target
of a friend declaration is a specific specialization of a template.
I was surprised to find that this was required for an access-controlled selfhost.
llvm-svn: 99383
on unqualified declarations.
Patch by Enea Zaffanella! Minimal adjustments: allocate the ExtInfo nodes
with the ASTContext and delete them during Destroy(). I audited a bunch of
Destroy methods at the same time, to ensure that the correct teardown was
being done.
llvm-svn: 98540
instantiation. Based on a patch by Enea Zaffanella! I found a way to
reduce some of the redundancy between TreeTransform's "standard"
FunctionProtoType transformation and TemplateInstantiator's override,
and I killed off the old SubstFunctionType by adding type source info
for the last cases where we were creating FunctionDecls without TSI
(at least that get passed through template instantiation).
llvm-svn: 98252
injected class name of a class template or class template partial specialization.
This is a non-canonical type; the canonical type is still a template
specialization type. This becomes the TypeForDecl of the pattern declaration,
which cleans up some amount of code (and complicates some other parts, but
whatever).
Fixes PR6326 and probably a few others, primarily by re-establishing a few
invariants about TypeLoc sizes.
llvm-svn: 98134
template definition. Do this both by being more tolerant of errors in
our asserts and by not dropping a variable declaration completely when
its initializer is ill-formed. Fixes the crash-on-invalid in PR6375,
but not the original issue.
llvm-svn: 97463
Sema::ActOnUninitializedDecl over to InitializationSequence (with
default initialization), eliminating redundancy. More importantly, we
now check that a const definition in C++ has an initilizer, which was
an #if 0'd code for many, many months. A few other tweaks were needed
to get everything working again:
- Fix all of the places in the testsuite where we defined const
objects without initializers (now that we diagnose this issue)
- Teach instantiation of static data members to find the previous
declaration, so that we build proper redeclaration
chains. Previously, we had the redeclaration chain but built it
too late to be useful, because...
- Teach instantiation of static data member definitions not to try
to check an initializer if a previous declaration already had an
initializer. This makes sure that we don't complain about static
const data members with in-class initializers and out-of-line
definitions.
- Move all of the incomplete-type checking logic out of
Sema::FinalizeDeclaratorGroup; it makes more sense in
ActOnUnitializedDecl.
There may still be a few places where we can improve these
diagnostics. I'll address that as a separate commit.
llvm-svn: 95657
type-checking within a template definition. In this case, the
"instantiated" declaration is just the declaration itself, found
within the current instantiation. Fixes PR6239.
llvm-svn: 95442
when instantiating the declaration of a member template:
- Only check if the have a template template argument at a specific position
when we already know that we have template arguments at that level;
otherwise, we're substituting for a level-reduced template template
parameter.
- When trying to find an instantiated declaration for a template
template parameter, look into the instantiated scope. This was a
typo, where we had two checks for TemplateTypeParmDecl, one of
which should have been a TemplateTemplateParmDecl.
With these changes, tramp3d-v4 passes -fsyntax-only.
llvm-svn: 95421
(necessarily simultaneous) changes:
- CXXBaseOrMemberInitializer now contains only a single initializer
rather than a set of initialiation arguments + a constructor. The
single initializer covers all aspects of initialization, including
constructor calls as necessary but also cleanup of temporaries
created by the initializer (which we never handled
before!).
- Rework + simplify code generation for CXXBaseOrMemberInitializers,
since we can now just emit the initializer as an initializer.
- Switched base and member initialization over to the new
initialization code (InitializationSequence), so that it
- Improved diagnostics for the new initialization code when
initializing bases and members, to match the diagnostics produced
by the previous (special-purpose) code.
- Simplify the representation of type-checked constructor initializers in
templates; instead of keeping the fully-type-checked AST, which is
rather hard to undo at template instantiation time, throw away the
type-checked AST and store the raw expressions in the AST. This
simplifies instantiation, but loses a little but of information in
the AST.
- When type-checking implicit base or member initializers within a
dependent context, don't add the generated initializers into the
AST, because they'll look like they were explicit.
- Record in CXXConstructExpr when the constructor call is to
initialize a base class, so that CodeGen does not have to infer it
from context. This ensures that we call the right kind of
constructor.
There are also a few "opportunity" fixes here that were needed to not
regress, for example:
- Diagnose default-initialization of a const-qualified class that
does not have a user-declared default constructor. We had this
diagnostic specifically for bases and members, but missed it for
variables. That's fixed now.
- When defining the implicit constructors, destructor, and
copy-assignment operator, set the CurContext to that constructor
when we're defining the body.
llvm-svn: 94952
translation unit. This is temporary for function and block parameters;
template parameters can just stay this way, since Templates aren't
DeclContexts. This gives us the nice property that everything created
in a record DC should have access in C++.
llvm-svn: 94122
which are instantiations of the member functions of local
classes. These implicit instantiations have to occur at the same time
as---and in the same local instantiation scope as---the enclosing
function, since the member functions of the local class can refer to
locals within the enclosing function. This should really, really fix PR5764.
llvm-svn: 93666
to merge the local instantiation scope with the outer local
instantiation scope, so that we can instantiate declarations from the
function owning the local class. Fixes an assert while instantiating
Boost.MPL's BOOST_MPL_ASSERT_MSG.
llvm-svn: 93651
keep track of friends within templates, which will provide a real for
PR5866. For now, this makes sure we don't do something entirely stupid
with friends of specializations.
llvm-svn: 92143
- During instantiation, drop default arguments from constructor and
call expressions; they'll be recomputed anyway, and we don't want
to instantiate them twice.
- Rewrote the instantiation of variable initializers to cope with
non-dependent forms properly.
Together, these fix a handful of problems I introduced with the switch
to always rebuild expressions from the source code "as written."
llvm-svn: 91315
implicitly-generated AST nodes. We previously built instantiated nodes
for each of these AST nodes, then passed them on to Sema, which was
not prepared to see already-type-checked nodes (see PR5755). In some
places, we had ugly workarounds to try to avoid re-type-checking
(e.g., in VarDecl initializer instantiation).
Now, we skip implicitly-generated nodes when performing instantiation,
preferring instead to build just the AST nodes that directly reflect
what was written in the source code. This has several advantages:
- We don't need to instantiate anything that doesn't have a direct
correlation to the source code, so we can have better location
information.
- Semantic analysis sees the same thing at template instantiation
time that it would see for a non-template.
- At least one ugly hack (VarDecl initializers) goes away.
Fixes PR5755.
llvm-svn: 91218
are a couple of O(n^2) operations in this, some analogous to the usual O(n^2)
redeclaration problem and some not. In particular, retroactively removing
shadow declarations when they're hidden by later decls is pretty unfortunate.
I'm not yet convinced it's worse than the alternative, though.
llvm-svn: 91045
print exception specifications on function types and
declarations. Fixes <rdar://problem/7450999>.
There is some poor source-location information here, because we don't
track locations of the types in exception specifications. Filed PR5719.
Failures during template instantiation of the signature of a function
or function template have wrong point-of-instantiation location
information. I'll tackle that with a separate commit.
llvm-svn: 90863
temporaries that are within our current evaluation context. That way,
nested evaluation contexts (e.g., within a sizeof() expression) won't
see temporaries from outer contexts. Also, make sure to push a new
evaluation context when instantiating the initializer of a variable;
this may be an unevaluated context or a potentially-evaluated context,
depending on whether it's an in-class initializer or not. Fixes PR5672.
llvm-svn: 90460
common to both parsing and template instantiation, so that we'll find
overridden virtuals for member functions of class templates when they
are instantiated.
Additionally, factor out the checking for pure virtual functions, so
that it will be executed both at parsing time and at template
instantiation time.
These changes fix PR5656 (for real), although one more tweak
w.r.t. member function templates will be coming along shortly.
llvm-svn: 90241
two classes, one for typenames and one for values; this seems to have some
support from Doug if not necessarily from the extremely-vague-on-this-point
standard. Track the location of the 'typename' keyword in a using-typename
decl. Make a new lookup result for unresolved values and deal with it in
most places.
llvm-svn: 89184
Also, make the "don't know how to instantiate a particular kind of
declaration" diagnostic nicer, so we don't have to trap Clang in a
debugger to figure out what went wrong.
llvm-svn: 89050
LookupResult RAII powers to diagnose ambiguity in the results. Other diagnostics
(e.g. access control and deprecation) will be moved to automatically trigger
during lookup as part of this same mechanism.
This abstraction makes it much easier to encapsulate aliasing declarations
(e.g. using declarations) inside the lookup system: eventually, lookup will
just produce the aliases in the LookupResult, and the standard access methods
will naturally strip the aliases off.
llvm-svn: 89027
like a copy constructor to the overload set, just ignore it. This
ensures that we don't try to use such a constructor as a copy
constructor *without* triggering diagnostics at the point of
declaration.
Note that we *do* diagnose such copy constructors when explicitly
written by the user (e.g., as an explicit specialization).
llvm-svn: 88733
with its corresponding template parameter. This can happen when we
performed some substitution into the default template argument and
what we had doesn't match any more, e.g.,
template<int> struct A;
template<typename T, template<T> class X = A> class B;
B<long> b;
Previously, we'd emit a pretty but disembodied diagnostic showing how
the default argument didn't match the template parameter. The
diagnostic was good, but nothing tied it to the *use* of the default
argument in "B<long>". This commit fixes that.
Also, tweak the counting of active template instantiations to avoid
counting non-instantiation records, such as those we create for
(surprise!) checking default arguments, instantiating default
arguments, and performing substitutions as part of template argument
deduction.
llvm-svn: 86884
template template parameter, substitute any prior template arguments
into the template template parameter. This, for example, allows us to
properly check the template template argument for a class such as:
template<typename T, template<T Value> class X> struct Foo;
The actual implementation of this feature was trivial; most of the
change is dedicated to giving decent diagnostics when this
substitution goes horribly wrong. We now get a note like:
note: while substituting prior template arguments into template
template parameter 'X' [with T = float]
As part of this change, enabled some very pedantic checking when
comparing template template parameter lists, which shook out a bug in
our overly-eager checking of default arguments of template template
parameters. We now perform only minimal checking of such default
arguments when they are initially parsed.
llvm-svn: 86864
templates. The instantiation of these default arguments must be (and
now, is) delayed until the template argument is actually used, at
which point we substitute all levels of template arguments
concurrently.
llvm-svn: 86578
integral constant expression, make sure to find where the initializer
was provided---inside or outside the class definition---since that can
affect whether we have an integral constant expression (and, we need
to see the initializer itself).
llvm-svn: 85741
parameters and template type parameters, which occurs when
substituting into the declarations of member templates inside class
templates. This eliminates errors about our inability to "reduce
non-type template parameter depth", fixing PR5311.
Also fixes a bug when instantiating a template type parameter
declaration in a member template, where we weren't properly reducing
the template parameter's depth.
LLVM's StringSwitch header now parses.
llvm-svn: 85669
types. Preserve it through template instantiation. Preserve it through PCH,
although TSTs themselves aren't serializable, so that's pretty much meaningless.
llvm-svn: 85500
class template partial specializations of member templates. Also,
fixes a silly little bug in the marking of "used" template parameters
in member templates. Fixes PR5236.
llvm-svn: 85447
members that have a definition. Also, use
CheckSpecializationInstantiationRedecl as part of this instantiation
to make sure that we diagnose the various kinds of problems that can
occur with explicit instantiations.
llvm-svn: 85270
template instantiation. Preserve it through PCH. Show it off to the indexer.
I'm healthily ignoring the vector type cases because we don't have a sensible
TypeLoc implementation for them anyway.
llvm-svn: 84994
in the DeclaratorInfo, if one is present.
Preserve source information through template instantiation. This is made
more complicated by the possibility that ParmVarDecls don't have DIs, which
is possibly worth fixing in the future.
Also preserve source information for function parameters in ObjC method
declarations.
llvm-svn: 84971
functions/static data members of class template specializations that
do not have definitions. This is the latter part of [temp.explicit]p4;
the former part still needs more testing.
llvm-svn: 84182
template as a specialization. For example, this occurs with:
template<typename T>
struct X {
template<typename U> struct Inner { /* ... */ };
};
template<> template<typename T>
struct X<int>::Inner {
T member;
};
We need to treat templates that are member specializations as special
in two contexts:
- When looking for a definition of a member template, we look
through the instantiation chain until we hit the primary template
*or a member specialization*. This allows us to distinguish
between the primary "Inner" definition and the X<int>::Inner
definition, above.
- When computing all of the levels of template arguments needed to
instantiate a member template, don't add template arguments
from contexts outside of the instantiation of a member
specialization, since the user has already manually substituted
those arguments.
Fix up the existing test for p18, which was actually wrong (but we
didn't diagnose it because of our poor handling of member
specializations of templates), and add a new test for member
specializations of templates.
llvm-svn: 83974
function templates.
This commit ensures that friend function templates are constructed as
FunctionTemplateDecls rather than partial FunctionDecls (as they
previously were). It then implements template instantiation for friend
function templates, injecting the friend function template only when
no previous declaration exists at the time of instantiation.
Oh, and make sure that explicit specialization declarations are not
friends.
llvm-svn: 83970
that the scope in which it is being declared is complete. Also, when
instantiating a member class template's ClassTemplateDecl, be sure to
delay type creation so that the resulting type is dependent. Ick.
llvm-svn: 83923
that are declarations (rather than definitions). Also, be sure to set
the access specifiers properly when instantiating the declarations of
member function templates.
llvm-svn: 83911
templates, and keep track of how those member classes were
instantiated or specialized.
Make sure that we don't try to instantiate an explicitly-specialized
member class of a class template, when that explicit specialization
was a declaration rather than a definition.
llvm-svn: 83547
track of the kind of specialization or instantiation. Also, check the
scope of the specialization and ensure that a specialization
declaration without an initializer is not a definition.
llvm-svn: 83533
function of a class template was implicitly instantiated, explicitly
instantiated (declaration or definition), or explicitly
specialized. The same MemberSpecializationInfo structure will be used
for static data members and member classes as well.
llvm-svn: 83509
its definition may be defined, including in a class.
Also, put in an assertion when trying to instantiate a class template
partial specialization of a member template, which is not yet
implemented.
llvm-svn: 83469
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501
when we are not instantiating the corresponding "current
instantiation." This happens, e.g., when we are instantiating a
declaration reference that refers into the "current instantiation" but
occurs in a default function argument. The libstdc++ vector default
constructor now instantiates properly.
llvm-svn: 82069
instantiation definition can follow an explicit instantiation
declaration. This is as far as I want to go with extern templates now,
but they will still need quite a bit more work to get all of the C++0x
semantics right.
llvm-svn: 81573
templates. We now distinguish between an explicit instantiation
declaration and an explicit instantiation definition, and know not to
instantiate explicit instantiation declarations. Unfortunately, there
is some remaining confusion w.r.t. instantiation of out-of-line member
function definitions that causes trouble here.
llvm-svn: 81053
improved if there were a consistent name for getInstantiatedFromMemberX()
across all classes. Cheap refactor if someone wants to do it, but let's get the
buildbots happy first.
llvm-svn: 80425
When performing template instantiation of the definitions of member
templates (or members thereof), we build a data structure containing
the template arguments from each "level" of template
instantiation. During template instantiation, we substitute all levels
of template arguments simultaneously.
llvm-svn: 80389
declarations of same, introduce a single AST class and add appropriate bits
(encoded in the namespace) for whether a decl is "real" or not. Much hackery
about previously-declared / not-previously-declared, but it's essentially
mandated by the standard that friends alter lookup, and this is at least
fairly non-intrusive.
Refactor the Sema methods specific to friends for cleaner flow and less nesting.
Incidentally solve a few bugs, but I remain confident that we can put them back.
llvm-svn: 80353
templates within class templates, producing a member function template
of a class template specialization. If you can parse that, I'm
sorry. Example:
template<typename T>
struct X {
template<typename U> void f(T, U);
};
When we instantiate X<int>, we now instantiate the declaration
X<int>::f, which looks like this:
template<typename U> void X<int>::f(int, U);
The path this takes through
TemplateDeclInstantiator::VisitCXXMethodDecl is convoluted and
ugly, but I don't know how to improve it yet. I'm resting my hopes on
the multi-level substitution required to instantiate definitions of
nested templates, which may simplify this code as well.
More testing to come...
llvm-svn: 80252
code, fixing a problem where instantiations of out-of-line destructor
definitions would had the wrong lexical context.
Introduce tests for out-of-line definitions of the constructors,
destructors, and conversion functions of a class template partial
specialization.
llvm-svn: 79682
and will participate in overload resolution. Unify the instantiation
of CXXMethodDecls and CXXConstructorDecls, which had already gotten
out-of-sync.
llvm-svn: 79658
- Allowing one to name a member function template within a class
template and on the right-hand side of a member access expression.
- Template argument deduction for calls to member function templates.
- Registering specializations of member function templates (and
finding them later).
llvm-svn: 79581
DeclaratorDecl contains a DeclaratorInfo* to keep type source info.
Subclasses of DeclaratorDecl are FieldDecl, FunctionDecl, and VarDecl.
EnumConstantDecl still inherits from ValueDecl since it has no need for DeclaratorInfo.
Decl/Sema interfaces accept a DeclaratorInfo as parameter but no DeclaratorInfo is created yet.
llvm-svn: 79392
template arguments, as in template specialization types. This permits
matching out-of-line definitions of members for class templates that
involve non-type template parameters.
llvm-svn: 77462
Note that this also fixes a bug that affects non-template code, where we
were not treating out-of-line static data members are "file-scope" variables,
and therefore not checking their initializers.
llvm-svn: 77002
Note: One day, it might be useful to consider adding this info to DeclGroup (as the comments in FunctionDecl/VarDecl suggest). For now, I think this works fine. I considered moving this to ValueDecl (a common ancestor of FunctionDecl/VarDecl/FieldDecl), however this would add overhead to EnumConstantDecl (which would burn memory and isn't necessary).
llvm-svn: 75635
by distinguishing between substitution that occurs for template
argument deduction vs. explicitly-specifiad template arguments. This
is used both to improve diagnostics and to make sure we only provide
SFINAE in those cases where SFINAE should apply.
In addition, deal with the sticky issue where SFINAE only considers
substitution of template arguments into the *type* of a function
template; we need to issue hard errors beyond this point, as
test/SemaTemplate/operator-template.cpp illustrates.
llvm-svn: 74651
instantiation stack so that we provide a full instantiation
backtrace. Previously, we performed all of the instantiations implied
by the recursion, but each looked like a "top-level" instantiation.
The included test case tests the previous fix for the instantiation of
DeclRefExprs. Note that the "instantiated from" diagnostics still
don't tell us which template arguments we're instantiating with.
llvm-svn: 74540
"semantic analysis" part. Use the "semantic analysis" part when
performing template instantiation on a DeclRefExpr, rather than an ad
hoc list of rules to construct DeclRefExprs from the instantiation.
A test case for this change will come in with a large commit, which
illustrates what I was actually trying to work on.
llvm-svn: 74528
Remove ASTContext parameter from DeclContext's methods. This change cascaded down to other Decl's methods and changes to call sites started "escalating".
Timings using pre-tokenized "cocoa.h" showed only a ~1% increase in time run between and after this commit.
llvm-svn: 74506
For a FunctionDecl that has been instantiated due to template argument
deduction, we now store the primary template from which it was
instantiated and the deduced template arguments. From this
information, we can instantiate the body of the function template.
llvm-svn: 74232
templates.
For example, this now type-checks (but does not instantiate the body
of deref<int>):
template<typename T> T& deref(T* t) { return *t; }
void test(int *ip) {
int &ir = deref(ip);
}
Specific changes/additions:
* Template argument deduction from a call to a function template.
* Instantiation of a function template specializations (just the
declarations) from the template arguments deduced from a call.
* FunctionTemplateDecls are stored directly in declaration contexts
and found via name lookup (all forms), rather than finding the
FunctionDecl and then realizing it is a template. This is
responsible for most of the churn, since some of the core
declaration matching and lookup code assumes that all functions are
FunctionDecls.
llvm-svn: 74213
compilation, and (hopefully) introduce RAII objects for changing the
"potentially evaluated" state at all of the necessary places within
Sema and Parser. Other changes:
- Set the unevaluated/potentially-evaluated context appropriately
during template instantiation.
- We now recognize three different states while parsing or
instantiating expressions: unevaluated, potentially evaluated, and
potentially potentially evaluated (for C++'s typeid).
- When we're in a potentially potentially-evaluated context, queue
up MarkDeclarationReferenced calls in a stack. For C++ typeid
expressions that are potentially evaluated, we will play back
these MarkDeclarationReferenced calls when we exit the
corresponding potentially potentially-evaluated context.
- Non-type template arguments are now parsed as constant
expressions, so they are not potentially-evaluated.
llvm-svn: 73899
instantiation of tags local to member functions of class templates
(and, eventually, function templates) works when the tag is defined as
part of the decl-specifier-seq, e.g.,
struct S { T x, y; } s1;
Also, make sure that we don't try to default-initialize a dependent
type.
llvm-svn: 72568
given DeclContext is dependent on type parameters. Use this to
properly determine whether a TagDecl is dependent; previously, we were
missing the case where the TagDecl is a local class of a member
function of a class template (phew!).
Also, make sure that, when we instantiate declarations within a member
function of a class template (or a function template, eventually),
that we add those declarations to the "instantiated locals" map so
that they can be found when instantiating declaration references.
Unfortunately, I was not able to write a useful test for this change,
although the assert() that fires when uncommenting the FIXME'd line in
test/SemaTemplate/instantiate-declref.cpp tells the "experienced user"
that we're now doing the right thing.
llvm-svn: 72526
declaration references. The key realization is that dependent Decls,
which actually require instantiation, can only refer to the current
instantiation or members thereof. And, since the current context
during instantiation contains all of those members of the current
instantiation, we can simply find the real instantiate that matches up
with the "current instantiation" template.
llvm-svn: 72486
within a template now have a link back to the enumeration from which
they were instantiated. This means that we can now find the
instantiation of an anonymous enumeration.
llvm-svn: 72482
references. There are several smallish fixes here:
- Make sure we look through template parameter scope when
determining whether we're parsing a nested class (or nested class
*template*). This makes sure that we delay parsing the bodies of
inline member functions until after we're out of the outermost
class (template) scope.
- Since the bodies of member functions are always parsed
"out-of-line", even when they were declared in-line, teach
unqualified name lookup to look into the (semantic) parents.
- Use the new InstantiateDeclRef to handle the instantiation of a
reference to a declaration (in DeclRefExpr), which drastically
simplifies template instantiation for DeclRefExprs.
- When we're instantiating a ParmVarDecl, it must be in the current
instantiation scope, so only look there.
Also, remove the #if 0's and FIXME's from the dynarray example, which
now compiles and executes thanks to Anders and Eli.
llvm-svn: 72481
instantiation of a declaration from the template version (or version
that lives in a template) and a given set of template arguments. This
needs much, much more testing, but it suffices for simple examples
like
typedef T* iterator;
iterator begin();
llvm-svn: 72461
template, introduce that member function into the template
instantiation stack. Also, add diagnostics showing the member function
within the instantiation stack and clean up the qualified-name
printing so that we get something like:
note: in instantiation of member function 'Switch1<int, 2, 2>::f'
requested here
in the template instantiation backtrace.
llvm-svn: 72015
constructors and destructors. This is a requirement of
DeclarationNameTable::getCXXSpecialName that we weren't assert()'ing,
so it should have been caught much earlier :(
Big thanks to Anders for the test case.
llvm-svn: 71895
template to the FunctionDecls from which they were instantiated. This
is a necessary first step to support instantiation of the definitions
of such functions, but by itself does essentially nothing.
llvm-svn: 71792
of class members (recursively). Only member classes are actually
instantiated; the instantiation logic for member functions and
variables are just stubs.
llvm-svn: 71713
TemplateArgumentList. This avoids the need to pass around
pointer/length pairs of template arguments lists, and will eventually
make it easier to introduce member templates and variadic templates.
llvm-svn: 71517
template. The injected-class-name is either a type or a template,
depending on whether a '<' follows it. As a type, the
injected-class-name's template argument list contains its template
parameters in declaration order.
As part of this, add logic for canonicalizing declarations, and be
sure to canonicalize declarations used in template names and template
arguments.
A TagType is dependent if the declaration it references is dependent.
I'm not happy about the rather complicated protocol needed to use
ASTContext::getTemplateSpecializationType.
llvm-svn: 71408
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
pointer. Its purpose in life is to be a glorified void*, but which does not
implicitly convert to void* or other OpaquePtr's with a different UID.
Introduce Action::DeclPtrTy which is a typedef for OpaquePtr<0>. Change the
entire parser/sema interface to use DeclPtrTy instead of DeclTy*. This
makes the C++ compiler enforce that these aren't convertible to other opaque
types.
We should also convert ExprTy, StmtTy, TypeTy, AttrTy, BaseTy, etc,
but I don't plan to do that in the short term.
The one outstanding known problem with this patch is that we lose the
bitmangling optimization where ActionResult<DeclPtrTy> doesn't know how to
bitmangle the success bit into the low bit of DeclPtrTy. I will rectify
this with a subsequent patch.
llvm-svn: 67952
specializations can be treated as a template. Finally, we can parse
and process the first implementation of Fibonacci I wrote!
Note that this code does not handle all of the cases where
injected-class-names can be treated as templates. In particular,
there's an ambiguity case that we should be able to handle (but
can't), e.g.,
template <class T> struct Base { };
template <class T> struct Derived : Base<int>, Base<char> {
typename Derived::Base b; // error: ambiguous
typename Derived::Base<double> d; // OK
};
llvm-svn: 67720