Commit Graph

11905 Commits

Author SHA1 Message Date
Duncan P. N. Exon Smith 176b691d32 Revert "Revert "DI: Fold constant arguments into a single MDString""
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash.  The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).

Original commit message follows.

--

This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 219010
2014-10-03 20:01:09 +00:00
Benjamin Kramer e12a6bac32 Eliminate some deep std::vector copies. NFC.
llvm-svn: 218999
2014-10-03 18:33:16 +00:00
Duncan P. N. Exon Smith 786cd049fc Revert "DI: Fold constant arguments into a single MDString"
This reverts commit r218914 while I investigate some bots.

llvm-svn: 218918
2014-10-02 22:15:31 +00:00
Duncan P. N. Exon Smith 571f97bd90 DI: Fold constant arguments into a single MDString
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 218914
2014-10-02 21:56:57 +00:00
Sanjay Patel 12d1ce5408 Optimize square root squared (PR21126).
When unsafe-fp-math is enabled, we can turn sqrt(X) * sqrt(X) into X.

This can happen in the real world when calculating x ** 3/2. This occurs
in test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c.

Differential Revision: http://reviews.llvm.org/D5584

llvm-svn: 218906
2014-10-02 21:10:54 +00:00
Sanjay Patel b41d46118a Use the local variable that other clauses around here are already using.
llvm-svn: 218876
2014-10-02 15:20:45 +00:00
Zinovy Nis ccc3e3733b [BUG][INDVAR] Fix for PR21014: wrong SCEV operands commuting for non-commutative instructions
My commit rL216160 introduced a bug PR21014: IndVars widens code 'for (i = ; i < ...; i++) arr[ CONST - i]' into 'for (i = ; i < ...; i++) arr[ i - CONST]'
thus inverting index expression. This patch fixes it. 
Thanks to Jörg Sonnenberger for pointing.

Differential Revision: http://reviews.llvm.org/D5576

llvm-svn: 218867
2014-10-02 13:01:15 +00:00
Duncan P. N. Exon Smith 611afb229c DIBuilder: Encapsulate DIExpression's element type
`DIExpression`'s elements are 64-bit integers that are stored as
`ConstantInt`.  The accessors already encapsulate the storage.  This
commit updates the `DIBuilder` API to also encapsulate that.

llvm-svn: 218797
2014-10-01 20:26:08 +00:00
Adrian Prantl 87b7eb9d0f Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
2014-10-01 18:55:02 +00:00
Adrian Prantl b458dc2eee Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

llvm-svn: 218782
2014-10-01 18:10:54 +00:00
Adrian Prantl 25a7174e7a Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

llvm-svn: 218778
2014-10-01 17:55:39 +00:00
Tom Stellard 0a4e9a3b25 C API: Add LLVMCloneModule()
llvm-svn: 218775
2014-10-01 17:14:57 +00:00
Evgeniy Stepanov 815f2869ad Revert r218721, r218735.
Failing bootstrap on Linux (arm, x86).

http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/13139/steps/bootstrap%20clang/logs/stdio
http://lab.llvm.org:8011/builders/clang-cmake-armv7-a15-selfhost/builds/470
http://lab.llvm.org:8011/builders/clang-native-arm-lnt/builds/8518

llvm-svn: 218752
2014-10-01 10:07:28 +00:00
Gerolf Hoflehner 19fc3dafc8 [InstCombine] Fix for assert build failures caused by r218721
The icmp-select-icmp optimization made the implicit assumption
that the select-icmp instructions are in the same block and asserted on it.
The fix explicitly checks for that condition and conservatively suppresses
the optimization when it is violated.

llvm-svn: 218735
2014-10-01 03:24:39 +00:00
Gerolf Hoflehner 08cc4b950c [InstCombine] Optimize icmp-select-icmp
In special cases select instructions can be eliminated by
replacing them with a cheaper bitwise operation even when the
select result is used outside its home block. The instances implemented
are patterns like
    %x=icmp.eq
    %y=select %x,%r, null
    %z=icmp.eq|neq %y, null
    br %z,true, false
==> %x=icmp.ne
    %y=icmp.eq %r,null
    %z=or %x,%y
    br %z,true,false
The optimization is integrated into the instruction
combiner and performed only when all uses of the select result can
be replaced by the select operand proper. For this dominator information
is used and dominance is now a required analysis pass in the combiner.
The optimization itself is iterative. The critical step is to replace the
select result with the non-constant select operand. So the select becomes
local and the combiner iteratively works out simpler code pattern and
eventually eliminates the select.

rdar://17853760

llvm-svn: 218721
2014-10-01 00:13:22 +00:00
Jingyue Wu fc0296704c [SimplifyCFG] threshold for folding branches with common destination
Summary:
This patch adds a threshold that controls the number of bonus instructions
allowed for folding branches with common destination. The original code allows
at most one bonus instruction. With this patch, users can customize the
threshold to allow multiple bonus instructions. The default threshold is still
1, so that the code behaves the same as before when users do not specify this
threshold.

The motivation of this change is that tuning this threshold significantly (up
to 25%) improves the performance of some CUDA programs in our internal code
base. In general, branch instructions are very expensive for GPU programs.
Therefore, it is sometimes worth trading more arithmetic computation for a more
straightened control flow. Here's a reduced example:

  __global__ void foo(int a, int b, int c, int d, int e, int n,
                      const int *input, int *output) {
    int sum = 0;
    for (int i = 0; i < n; ++i)
      sum += (((i ^ a) > b) && (((i | c ) ^ d) > e)) ? 0 : input[i];
    *output = sum;
  }

The select statement in the loop body translates to two branch instructions "if
((i ^ a) > b)" and "if (((i | c) ^ d) > e)" which share a common destination.
With the default threshold, SimplifyCFG is unable to fold them, because
computing the condition of the second branch "(i | c) ^ d > e" requires two
bonus instructions. With the threshold increased, SimplifyCFG can fold the two
branches so that the loop body contains only one branch, making the code
conceptually look like:

  sum += (((i ^ a) > b) & (((i | c ) ^ d) > e)) ? 0 : input[i];

Increasing the threshold significantly improves the performance of this
particular example. In the configuration where both conditions are guaranteed
to be true, increasing the threshold from 1 to 2 improves the performance by
18.24%. Even in the configuration where the first condition is false and the
second condition is true, which favors shortcuts, increasing the threshold from
1 to 2 still improves the performance by 4.35%.

We are still looking for a good threshold and maybe a better cost model than
just counting the number of bonus instructions. However, according to the above
numbers, we think it is at least worth adding a threshold to enable more
experiments and tuning. Let me know what you think. Thanks!

Test Plan: Added one test case to check the threshold is in effect

Reviewers: nadav, eliben, meheff, resistor, hfinkel

Reviewed By: hfinkel

Subscribers: hfinkel, llvm-commits

Differential Revision: http://reviews.llvm.org/D5529

llvm-svn: 218711
2014-09-30 22:23:38 +00:00
Lorenzo Martignoni 40d3deeb7d Introduce support for custom wrappers for vararg functions.
Differential Revision: http://reviews.llvm.org/D5412

llvm-svn: 218671
2014-09-30 12:33:16 +00:00
Chad Rosier aab5d7bd33 [IndVarSimplify] Widen loop unsigned compares.
This patch extends r217953 to handle unsigned comparison.
Phabricator revision: http://reviews.llvm.org/D5526

llvm-svn: 218659
2014-09-30 03:17:42 +00:00
Kevin Qin fc02e3c363 Use a loop to simplify the runtime unrolling prologue.
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like

    extraiters = tripcount % loopfactor
    if (extraiters == 0) jump Loop:
    if (extraiters == loopfactor) jump L1
    if (extraiters == loopfactor-1) jump L2
    ...
    L1:  LoopBody;
    L2:  LoopBody;
    ...
    if tripcount < loopfactor jump End
    Loop:
    ...
    End:

It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like

        extraiters = tripcount % loopfactor
        if (extraiters == 0) jump Loop:
        else jump Prol
 Prol:  LoopBody;
        extraiters -= 1                 // Omitted if unroll factor is 2.
        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
        if (tripcount < loopfactor) jump End
 Loop:
 ...
 End:

Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.

llvm-svn: 218604
2014-09-29 11:15:00 +00:00
Chad Rosier 7b974b73ae [IndVar] Don't widen loop compare unless IV user is sign extended.
PR21030

llvm-svn: 218539
2014-09-26 20:05:35 +00:00
Kostya Serebryany 34ddf8725c [asan] don't instrument module CTORs that may be run before asan.module_ctor. This fixes asan running together -coverage
llvm-svn: 218421
2014-09-24 22:41:55 +00:00
David Peixotto 0d4d5e64ec Fix assertion in LICM doFinalization()
The doFinalization method checks that the LoopToAliasSetMap is
empty. LICM populates that map as it runs through the loop nest,
deleting the entries for child loops as it goes. However, if a child
loop is deleted by another pass (e.g. unrolling) then the loop will
never be deleted from the map because LICM walks the loop nest to
find entries it can delete.

The fix is to delete the loop from the map and free the alias set
when the loop is deleted from the loop nest.

Differential Revision: http://reviews.llvm.org/D5305

llvm-svn: 218387
2014-09-24 16:48:31 +00:00
Michael Liao d120916ca7 Allow BB duplication threshold to be adjusted through JumpThreading's ctor
- BB duplication may not be desired on targets where there is no or small
  branch penalty and code duplication needs restrict control.

llvm-svn: 218375
2014-09-24 04:59:06 +00:00
Reid Kleckner 78927e884b GlobalOpt: Preserve comdats of unoptimized initializers
Rather than slurping in and splatting out the whole ctor list, preserve
the existing array entries without trying to understand them.  Only
remove the entries that we know we can optimize away.  This way we don't
need to wire through priority and comdats or anything else we might add.

Fixes a linker issue where the .init_array or .ctors entry would point
to discarded initialization code if the comdat group from the TU with
the faulty global_ctors entry was dropped.

llvm-svn: 218337
2014-09-23 22:33:01 +00:00
Lenny Maiorani 9eefc81219 Using a deque to manage the stack of nodes is faster here.
Vector is slow due to many reallocations as the size regularly changes in
  unpredictable ways. See the investigation provided on the mailing list for
  more information:

http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html

llvm-svn: 218182
2014-09-20 13:29:20 +00:00
Eric Christopher d85ffb1fc0 Add a new pass FunctionTargetTransformInfo. This pass serves as a
shim between the TargetTransformInfo immutable pass and the Subtarget
via the TargetMachine and Function. Migrate a single call from
BasicTargetTransformInfo as an example and provide shims where TargetMachine
begins taking a Function to determine the subtarget.

No functional change.

llvm-svn: 218004
2014-09-18 00:34:14 +00:00
David Blaikie dba94ec3c7 Reapply fix in r217988 (reverted in r217989) and remove the alternative fix committed in r217987.
This type isn't owned polymorphically (as demonstrated by making the
dtor protected and everything still compiling) so just address the
warning by protecting the base dtor and making the derived class final.

llvm-svn: 217990
2014-09-17 22:27:36 +00:00
David Blaikie d8978ec085 Revert "Fix -Wnon-virtual-dtor warning introduced in r217982."
An alternative fix was already committed.

This reverts commit r217988.

llvm-svn: 217989
2014-09-17 22:17:59 +00:00
David Blaikie 20dd05ccfd Fix -Wnon-virtual-dtor warning introduced in r217982.
llvm-svn: 217988
2014-09-17 22:15:40 +00:00
Chris Bieneman cf93cbb7a4 Fixing a build error.
llvm-svn: 217983
2014-09-17 21:06:59 +00:00
Chris Bieneman ad070d0588 Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
Summary: This eliminates ~200 lines of code mostly file scoped struct definitions that were unnecessary.

Reviewers: chandlerc, resistor

Reviewed By: resistor

Subscribers: morisset, resistor, llvm-commits

Differential Revision: http://reviews.llvm.org/D5364

llvm-svn: 217982
2014-09-17 20:55:46 +00:00
Chad Rosier 307b50b0f6 [IndVarSimplify] Partially revert r217953 to see if this fixes the bots.
Specifically, disable widening of unsigned compare instructions.

llvm-svn: 217962
2014-09-17 16:35:09 +00:00
Chad Rosier bb99f40530 [IndVarSimplify] Widen loop compare instructions.
This improves other optimizations such as LSR.  A sext may be added to the
compare's other operand, but this can often be hoisted outside of the loop.

llvm-svn: 217953
2014-09-17 14:10:33 +00:00
Andrea Di Biagio 5b92b4971a [InstCombine] Fix wrong folding of constant comparison involving ahsr and negative quantities (PR20945).
Example:
define i1 @foo(i32 %a) {
  %shr = ashr i32 -9, %a
  %cmp = icmp ne i32 %shr, -5
  ret i1 %cmp
}

Before this fix, the instruction combiner wrongly thought that %shr
could have never been equal to -5. Therefore, %cmp was always folded to 'true'.
However, when %a is equal to 1, then %cmp evaluates to 'false'. Therefore,
in this example, it is not valid to fold %cmp to 'true'.
The problem was only affecting the case where the comparison was between
negative quantities where one of the quantities was obtained from arithmetic
shift of a negative constant.

This patch fixes the problem with the wrong folding (fixes PR20945).
With this patch, the 'icmp' from the example is now simplified to a
comparison between %a and 1. This still allows us to get rid of the arithmetic
shift (%shr).

llvm-svn: 217950
2014-09-17 11:32:31 +00:00
Jingyue Wu b67140b812 Remove dead code in SimplifyCFG
Summary: UsedByBranch is always true according to how BonusInst is defined.

Test Plan:
Passes check-all, and also verified 

if (BonusInst && !UsedByBranch) {
  ...
}

is never entered during check-all.

Reviewers: resistor, nadav, jingyue

Reviewed By: jingyue

Subscribers: llvm-commits, eliben, meheff

Differential Revision: http://reviews.llvm.org/D5324

llvm-svn: 217824
2014-09-15 20:48:13 +00:00
Nick Lewycky 9e6d184803 Add control of function merging to the PMBuilder.
llvm-svn: 217731
2014-09-13 21:46:00 +00:00
Benjamin Kramer 0bd147da17 Simplify code. No functionality change.
llvm-svn: 217726
2014-09-13 12:38:49 +00:00
Juergen Ributzka 14ae60407d [C API] Make the 'lower switch' pass available via the C API.
llvm-svn: 217630
2014-09-11 21:32:32 +00:00
Hal Finkel f83e1f7f66 [AlignmentFromAssumptions] Don't crash just because the target is 32-bit
We used to crash processing any relevant @llvm.assume on a 32-bit target
(because we'd ask SE to subtract expressions of differing types). I've copied
our 'simple.ll' test, but with the data layout from arm-linux-gnueabihf to get
some meaningful test coverage here.

llvm-svn: 217574
2014-09-11 08:40:17 +00:00
Rafael Espindola c435adcde0 Add doInitialization/doFinalization to DataLayoutPass.
With this a DataLayoutPass can be reused for multiple modules.

Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.

Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.

llvm-svn: 217548
2014-09-10 21:27:43 +00:00
Hal Finkel 71b7084112 [AlignmentFromAssumptions] Don't divide by zero for unknown starting alignment
The routine that determines an alignment given some SCEV returns zero if the
answer is unknown. In a case where we could determine the increment of an
AddRec but not the starting alignment, we would compute the integer modulus by
zero (which is illegal and traps). Prevent this by returning early if either
the start or increment alignment is unknown (zero).

llvm-svn: 217544
2014-09-10 21:05:52 +00:00
Gerolf Hoflehner 008e5cdcba [PassManager] Adding Hidden attribute to EnableMLSM option
llvm-svn: 217539
2014-09-10 20:24:03 +00:00
Gerolf Hoflehner 24815d9b8f [MergedLoadStoreMotion] Move pass enabling option to PassManagerBuilder
llvm-svn: 217538
2014-09-10 19:55:29 +00:00
Sanjay Patel b653de1ada Rename getMaximumUnrollFactor -> getMaxInterleaveFactor; also rename option names controlling this variable.
"Unroll" is not the appropriate name for this variable. Clang already uses 
the term "interleave" in pragmas and metadata for this.

Differential Revision: http://reviews.llvm.org/D5066

llvm-svn: 217528
2014-09-10 17:58:16 +00:00
Gerolf Hoflehner e4f6684d1b Removed misleading comment.
llvm-svn: 217527
2014-09-10 17:54:50 +00:00
Stepan Dyatkovskiy fe134cdfa7 MergeFunctions: FunctionPtr has been renamed to FunctionNode.
It's supposed to store additional pass information for current function here.
That was the reason for name change.

llvm-svn: 217483
2014-09-10 10:08:25 +00:00
NAKAMURA Takumi 1ab0cf0e28 SampleProfile.cpp: Prune a stray \param added in r217437. [-Wdocumentation]
llvm-svn: 217465
2014-09-09 22:44:30 +00:00
NAKAMURA Takumi bb4fac9050 ScalarOpts/LLVMBuild.txt: Prune unused dependency to IPA.
llvm-svn: 217448
2014-09-09 15:00:38 +00:00
NAKAMURA Takumi 37ffecf06b ScalarOpts/LLVMBuild.txt: Reorder.
llvm-svn: 217447
2014-09-09 15:00:26 +00:00
Diego Novillo de1ab26f52 Re-factor sample profile reader into lib/ProfileData.
Summary:
This patch moves the profile reading logic out of the Sample Profile
transformation into a generic profile reader facility in
lib/ProfileData.

The intent is to use this new reader to implement a sample profile
reader/writer that can be used to convert sample profiles from external
sources into LLVM.

This first patch introduces no functional changes. It moves the profile
reading code from lib/Transforms/SampleProfile.cpp into
lib/ProfileData/SampleProfReader.cpp.

In subsequent patches I will:

- Add a bitcode format for sample profiles to allow for more efficient
  encoding of the profile.
- Add a writer for both text and bitcode format profiles.
- Add a 'convert' command to llvm-profdata to be able to convert between
  the two (and serve as entry point for other sample profile formats).

Reviewers: bogner, echristo

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5250

llvm-svn: 217437
2014-09-09 12:40:50 +00:00