Commit Graph

387 Commits

Author SHA1 Message Date
Hal Finkel 51b3fd1e28 [PowerPC] Guard against illegal selection of add for TargetConstant operands
r208640 was reverted because it caused a self-hosting failure on ppc64. The
underlying cause was the formation of ISD::ADD nodes with ISD::TargetConstant
operands. Because we have no patterns for 'add' taking 'timm' nodes, these are
selected as r+r add instructions (which is a miscompile). Guard against this
kind of behavior in the future by making the backend crash should this occur
(instead of silently generating invalid output).

llvm-svn: 216897
2014-09-02 06:23:54 +00:00
Justin Hibbits 3476db4220 Test commit. Fix whitespace from a previous patch of mine.
llvm-svn: 216650
2014-08-28 04:40:55 +00:00
Eric Christopher d913448b38 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

llvm-svn: 214781
2014-08-04 21:25:23 +00:00
Ulrich Weigand c4cc7febb0 [PowerPC] Fix and improve vector comparisons
This patch refactors code generation of vector comparisons.

This fixes a wrong code-gen bug for ISD::SETGE for floating-point types,
and improves generated code for vector comparisons in general.

Specifically, the patch moves all logic deciding how to implement vector
comparisons into getVCmpInst, which gets two extra boolean outputs
indicating to its caller whether its needs to swap the input operands
and/or negate the result of the comparison.  Apart from implementing
these two modifications as directed by getVCmpInst, there is no need
to ever implement vector comparisons in any other manner; in particular,
there is never a need to perform two separate comparisons (e.g. one for
equal and one for greater-than, as code used to do before this patch).

Reviewed by Bill Schmidt.

llvm-svn: 214714
2014-08-04 13:13:57 +00:00
Hal Finkel 7c8ae53506 [PowerPC] Support TLS on PPC32/ELF
Patch by Justin Hibbits!

llvm-svn: 213960
2014-07-25 17:47:22 +00:00
Hal Finkel 3ee2af7d1c [PowerPC] 32-bit ELF PIC support
This adds initial support for PPC32 ELF PIC (Position Independent Code; the
-fPIC variety), thus rectifying a long-standing deficiency in the PowerPC
backend.

Patch by Justin Hibbits!

llvm-svn: 213427
2014-07-18 23:29:49 +00:00
Bill Schmidt 5d82f09b53 [PPC64] Fix PR19893 - improve code generation for local function addresses
Rafael opened http://llvm.org/bugs/show_bug.cgi?id=19893 to track non-optimal
code generation for forming a function address that is local to the compile
unit.  The existing code was treating both local and non-local functions
identically.

This patch fixes the problem by properly identifying local functions and
generating the proper addis/addi code.  I also noticed that Rafael's earlier
changes to correct the surrounding code in PPCISelLowering.cpp were also
needed for fast instruction selection in PPCFastISel.cpp, so this patch
fixes that code as well.

The existing test/CodeGen/PowerPC/func-addr.ll is modified to test the new
code generation.  I've added a -O0 run line to test the fast-isel code as
well.

Tested on powerpc64[le]-unknown-linux-gnu with no regressions.

llvm-svn: 211056
2014-06-16 21:36:02 +00:00
Rafael Espindola 04902862a8 [PPC] Use alias symbols in address computation.
This seems to match what gcc does for ppc and what every other llvm
backend does.

This is a fixed version of r209638. The difference is to avoid any change
in behavior for functions. The logic for using constant pools for function
addresseses is spread over a few places and we have to keep them in sync.

llvm-svn: 209821
2014-05-29 15:41:38 +00:00
Hal Finkel f5c07ada1d Revert "[PPC] Use alias symbols in address computation."
This reverts commit r209638 because it broke self-hosting on ppc64/Linux. (the
Clang-compiled TableGen would segfault because it jumped to an invalid address
from within _ZNK4llvm17ManagedStaticBase21RegisterManagedStaticEPFPvvEPFvS1_E
(which is within the command-line parameter registration process)).

llvm-svn: 209745
2014-05-28 15:25:06 +00:00
Rafael Espindola ac69cee6a2 [PPC] Use alias symbols in address computation.
This seems to match what gcc does for ppc and what every other llvm
backend does.

llvm-svn: 209638
2014-05-26 19:08:19 +00:00
Eric Christopher 1b8e763630 Reset the subtarget for DAGToDAG on every iteration of runOnMachineFunction.
This required updating the generated functions and TD file accordingly
to be pointers rather than const references.

llvm-svn: 209375
2014-05-22 01:07:24 +00:00
Rafael Espindola e0098928c9 Delete getAliasedGlobal.
llvm-svn: 209040
2014-05-16 22:37:03 +00:00
Jay Foad a0653a3e6c Rename ComputeMaskedBits to computeKnownBits. "Masked" has been
inappropriate since it lost its Mask parameter in r154011.

llvm-svn: 208811
2014-05-14 21:14:37 +00:00
Eric Christopher 02e1804d8d Fix typo in function name.
llvm-svn: 208743
2014-05-14 00:31:15 +00:00
Craig Topper 0d3fa92514 [C++11] Add 'override' keywords and remove 'virtual'. Additionally add 'final' and leave 'virtual' on some methods that are marked virtual without overriding anything and have no obvious overrides themselves. PowerPC edition
llvm-svn: 207504
2014-04-29 07:57:37 +00:00
Craig Topper 481fb2879f Convert SelectionDAG::SelectNodeTo to use ArrayRef.
llvm-svn: 207377
2014-04-27 19:21:11 +00:00
Craig Topper 062a2baef0 [C++] Use 'nullptr'. Target edition.
llvm-svn: 207197
2014-04-25 05:30:21 +00:00
Chandler Carruth 84e68b2994 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Target/...
edition.

llvm-svn: 206842
2014-04-22 02:41:26 +00:00
Hal Finkel d9963c75da [PowerPC] Fix rlwimi isel when mask is not constant
We had been using the known-zero values of the operand of the or to construct
the mask for an rlwimi; this is not quite correct, but fine when the mask is
constant. When the mask is constant, then the known zeros of the operand must
be a superset of the zeros in the mask. However, when the mask is not a
constant, then there might be bits in the operand that are not known to be zero
that, at runtime, might be zero in the mask. Therefore, we check that any bits
not known to be zero *are* known to be one in the mask. Otherwise, we can't
fold the mask with the or and shift.

This was revealed as a miscompile of
MultiSource/Benchmarks/BitBench/drop3/drop3 when I started experimenting with
constant hoisting.

llvm-svn: 206136
2014-04-13 17:10:58 +00:00
Hal Finkel 2583b06310 [PowerPC] Fix VSX permutation isel
Not only did I invert the indices when I wrote the code, but I also did the
same thing when I wrote the regression test. Oops.

llvm-svn: 205046
2014-03-28 20:24:55 +00:00
Rafael Espindola 24a669d225 Prevent alias from pointing to weak aliases.
This adds back r204781.

Original message:

Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given

define void @my_func() {
  ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias

We produce without this patch:

        .weak   my_alias
my_alias = my_func
        .globl  my_alias2
my_alias2 = my_alias

That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a

@my_alias = alias void ()* @other_func

would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.

There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.

llvm-svn: 204934
2014-03-27 15:26:56 +00:00
Hal Finkel df3e34d944 [PowerPC] Generate VSX permutations for v2[fi]64 vectors
llvm-svn: 204873
2014-03-26 22:58:37 +00:00
Hal Finkel 732f0f73a7 [PowerPC] Lower VSELECT using xxsel when VSX is available
With VSX there is a real vector select instruction, and so we should use it.
Note that VSELECT will still scalarize for v2f64 because the corresponding
SetCC result type (v2i64) is not currently a legal type.

llvm-svn: 204801
2014-03-26 12:49:28 +00:00
Rafael Espindola 65481d7b97 Revert "Prevent alias from pointing to weak aliases."
This reverts commit r204781.

I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.

llvm-svn: 204784
2014-03-26 06:14:40 +00:00
Rafael Espindola 3b712a84a9 Prevent alias from pointing to weak aliases.
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given

define void @my_func() {
  ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias

We produce without this patch:

        .weak   my_alias
my_alias = my_func
        .globl  my_alias2
my_alias2 = my_alias

That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a

@my_alias = alias void ()* @other_func

would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.

There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.

llvm-svn: 204781
2014-03-26 04:48:47 +00:00
Hal Finkel 27774d9274 [PowerPC] Initial support for the VSX instruction set
VSX is an ISA extension supported on the POWER7 and later cores that enhances
floating-point vector and scalar capabilities. Among other things, this adds
<2 x double> support and generally helps to reduce register pressure.

The interesting part of this ISA feature is the register configuration: there
are 64 new 128-bit vector registers, the 32 of which are super-registers of the
existing 32 scalar floating-point registers, and the second 32 of which overlap
with the 32 Altivec vector registers. This makes things like vector insertion
and extraction tricky: this can be free but only if we force a restriction to
the right register subclass when needed. A new "minipass" PPCVSXCopy takes care
of this (although it could do a more-optimal job of it; see the comment about
unnecessary copies below).

Please note that, currently, VSX is not enabled by default when targeting
anything because it is not yet ready for that.  The assembler and disassembler
are fully implemented and tested. However:

 - CodeGen support causes miscompiles; test-suite runtime failures:
      MultiSource/Benchmarks/FreeBench/distray/distray
      MultiSource/Benchmarks/McCat/08-main/main
      MultiSource/Benchmarks/Olden/voronoi/voronoi
      MultiSource/Benchmarks/mafft/pairlocalalign
      MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4
      SingleSource/Benchmarks/CoyoteBench/almabench
      SingleSource/Benchmarks/Misc/matmul_f64_4x4

 - The lowering currently falls back to using Altivec instructions far more
   than it should. Worse, there are some things that are scalarized through the
   stack that shouldn't be.

 - A lot of unnecessary copies make it past the optimizers, and this needs to
   be fixed.

 - Many more regression tests are needed.

Normally, I'd fix these things prior to committing, but there are some
students and other contributors who would like to work this, and so it makes
sense to move this development process upstream where it can be subject to the
regular code-review procedures.

llvm-svn: 203768
2014-03-13 07:58:58 +00:00
Hal Finkel 6daf2aa140 The PPC global base register cannot be r0
The global base register cannot be r0 because it might end up as the first
argument to addi or addis. Fixes PR18316.

I don't have a small stable test case.

llvm-svn: 203054
2014-03-06 01:28:23 +00:00
Hal Finkel b998915ee1 Swap PPC isel operands to allow for 0-folding
The PPC isel instruction can fold 0 into the first operand (thus eliminating
the need to materialize a zero-containing register when the 'true' result of
the isel is 0). When the isel is fed by a bit register operation that we can
invert, do so as part of the bit-register-operation peephole routine.

llvm-svn: 202469
2014-02-28 06:11:16 +00:00
Hal Finkel 940ab934d4 Add CR-bit tracking to the PowerPC backend for i1 values
This change enables tracking i1 values in the PowerPC backend using the
condition register bits. These bits can be treated on PowerPC as separate
registers; individual bit operations (and, or, xor, etc.) are supported.
Tracking booleans in CR bits has several advantages:

 - Reduction in register pressure (because we no longer need GPRs to store
   boolean values).

 - Logical operations on booleans can be handled more efficiently; we used to
   have to move all results from comparisons into GPRs, perform promoted
   logical operations in GPRs, and then move the result back into condition
   register bits to be used by conditional branches. This can be very
   inefficient, because the throughput of these CR <-> GPR moves have high
   latency and low throughput (especially when other associated instructions
   are accounted for).

 - On the POWER7 and similar cores, we can increase total throughput by using
   the CR bits. CR bit operations have a dedicated functional unit.

Most of this is more-or-less mechanical: Adjustments were needed in the
calling-convention code, support was added for spilling/restoring individual
condition-register bits, and conditional branch instruction definitions taking
specific CR bits were added (plus patterns and code for generating bit-level
operations).

This is enabled by default when running at -O2 and higher. For -O0 and -O1,
where the ability to debug is more important, this feature is disabled by
default. Individual CR bits do not have assigned DWARF register numbers,
and storing values in CR bits makes them invisible to the debugger.

It is critical, however, that we don't move i1 values that have been promoted
to larger values (such as those passed as function arguments) into bit
registers only to quickly turn around and move the values back into GPRs (such
as happens when values are returned by functions). A pair of target-specific
DAG combines are added to remove the trunc/extends in:
  trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
and:
  zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
In short, we only want to use CR bits where some of the i1 values come from
comparisons or are used by conditional branches or selects. To put it another
way, if we can do the entire i1 computation in GPRs, then we probably should
(on the POWER7, the GPR-operation throughput is higher, and for all cores, the
CR <-> GPR moves are expensive).

POWER7 test-suite performance results (from 10 runs in each configuration):

SingleSource/Benchmarks/Misc/mandel-2: 35% speedup
MultiSource/Benchmarks/Prolangs-C++/city/city: 21% speedup
MultiSource/Benchmarks/MiBench/automotive-susan: 23% speedup
SingleSource/Benchmarks/CoyoteBench/huffbench: 13% speedup
SingleSource/Benchmarks/Misc-C++/Large/sphereflake: 13% speedup
SingleSource/Benchmarks/Misc-C++/mandel-text: 10% speedup

SingleSource/Benchmarks/Misc-C++-EH/spirit: 10% slowdown
MultiSource/Applications/lemon/lemon: 8% slowdown

llvm-svn: 202451
2014-02-28 00:27:01 +00:00
Hal Finkel 860fa9052e [PPC] Fix comment to match function name
llvm-svn: 198362
2014-01-02 22:09:39 +00:00
Hal Finkel 22498fa6e3 PPC: Optimize rldicl generation for masked shifts
Masking operations (where only some number of the low bits are being kept) are
selected to rldicl(x, 0, mb). If x is a logical right shift (which would become
rldicl(y, 64-n, n)), we might be able to fold the two instructions together:

  rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) for n <= mb

The right shift is really a left rotate followed by a mask, and if the explicit
mask is a more-restrictive sub-mask of the mask implied by the shift, only one
rldicl is needed.

llvm-svn: 195185
2013-11-20 01:10:15 +00:00
Tim Northover 31d093c705 ISelDAG: spot chain cycles involving MachineNodes
Previously, the DAGISel function WalkChainUsers was spotting that it
had entered already-selected territory by whether a node was a
MachineNode (amongst other things). Since it's fairly common practice
to insert MachineNodes during ISelLowering, this was not the correct
check.

Looking around, it seems that other nodes get their NodeId set to -1
upon selection, so this makes sure the same thing happens to all
MachineNodes and uses that characteristic to determine whether we
should stop looking for a loop during selection.

This should fix PR15840.

llvm-svn: 191165
2013-09-22 08:21:56 +00:00
Hal Finkel ff3ea8060c PPCDAGToDAGISel::isRunOfOnes should return false on zero
This fixes a bug (found by csmith) at -O0 where we attempt to create a RLWIMI
with an out-of-range operand. Most uses of the isRunOfOnes function are guarded
by a condition that the value is not zero. This was not true in two places, and
in both places a zero input would result in an out-of-rage MB value (= 32).

To fix this, isRunOfOnes returns false on a zero input (and I've remove one
now-redundant guard).

llvm-svn: 186101
2013-07-11 16:31:51 +00:00
Ulrich Weigand d5ebc626d5 [PowerPC] Always use mfocrf if available
When accessing just a single CR register, it is always preferable to
use mfocrf instead of mfcr, if the former is available on the CPU.

Current code makes that distinction in many, but not all places
where a single CR register value is retrieved.  One missing
location is PPCRegisterInfo::lowerCRSpilling.

To fix this and make this simpler in the future, this patch changes
the bulk of the back-end to always assume mfocrf is available and
simply generate it when needed.

On machines that actually do not support mfocrf, the instruction
is replaced by mfcr at the very end, in EmitInstruction.

This has the additional benefit that we no longer need the
MFCRpseud hack, since before EmitInstruction we always have
a MFOCRF instruction pattern, which already models data flow
as required.

The patch also adds the MFOCRF8 version of the instruction,
which was missing so far.

Except for the PPCRegisterInfo::lowerCRSpilling case, no change
in generated code intended.

llvm-svn: 185556
2013-07-03 17:05:42 +00:00
Ulrich Weigand 47e9328afe [PowerPC] Remove dead code from PPCDAGToDAGISel::SelectSETCC
The subroutine getCRIdxForSetCC has a parameter "Other" and comment:

  If this returns with Other != -1, then the returned comparison
  is an or of two simpler comparisons.

However for at least the last five years this routine has never
returned a value of Other != -1; these cases are now handled
differently to begin with.

This patch removes the parameter and the code in SelectSETCC that
attempted to handle the Other != -1 case.

llvm-svn: 185541
2013-07-03 15:13:30 +00:00
Bill Schmidt 48fc20a034 Index: test/CodeGen/PowerPC/reloc-align.ll
===================================================================
--- test/CodeGen/PowerPC/reloc-align.ll	(revision 0)
+++ test/CodeGen/PowerPC/reloc-align.ll	(revision 0)
@@ -0,0 +1,34 @@
+; RUN: llc -mcpu=pwr7 -O1 < %s | FileCheck %s
+
+; This test verifies that the peephole optimization of address accesses
+; does not produce a load or store with a relocation that can't be
+; satisfied for a given instruction encoding.  Reduced from a test supplied
+; by Hal Finkel.
+
+target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-v128:128:128-n32:64"
+target triple = "powerpc64-unknown-linux-gnu"
+
+%struct.S1 = type { [8 x i8] }
+
+@main.l_1554 = internal global { i8, i8, i8, i8, i8, i8, i8, i8 } { i8 -1, i8 -6, i8 57, i8 62, i8 -48, i8 0, i8 58, i8 80 }, align 1
+
+; Function Attrs: nounwind readonly
+define signext i32 @main() #0 {
+entry:
+  %call = tail call fastcc signext i32 @func_90(%struct.S1* byval bitcast ({ i8, i8, i8, i8, i8, i8, i8, i8 }* @main.l_1554 to %struct.S1*))
+; CHECK-NOT: ld {{[0-9]+}}, main.l_1554@toc@l
+  ret i32 %call
+}
+
+; Function Attrs: nounwind readonly
+define internal fastcc signext i32 @func_90(%struct.S1* byval nocapture %p_91) #0 {
+entry:
+  %0 = bitcast %struct.S1* %p_91 to i64*
+  %bf.load = load i64* %0, align 1
+  %bf.shl = shl i64 %bf.load, 26
+  %bf.ashr = ashr i64 %bf.shl, 54
+  %bf.cast = trunc i64 %bf.ashr to i32
+  ret i32 %bf.cast
+}
+
+attributes #0 = { nounwind readonly "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"="true" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" }
Index: lib/Target/PowerPC/PPCAsmPrinter.cpp
===================================================================
--- lib/Target/PowerPC/PPCAsmPrinter.cpp	(revision 185327)
+++ lib/Target/PowerPC/PPCAsmPrinter.cpp	(working copy)
@@ -679,7 +679,26 @@ void PPCAsmPrinter::EmitInstruction(const MachineI
       OutStreamer.EmitRawText(StringRef("\tmsync"));
       return;
     }
+    break;
+  case PPC::LD:
+  case PPC::STD:
+  case PPC::LWA: {
+    // Verify alignment is legal, so we don't create relocations
+    // that can't be supported.
+    // FIXME:  This test is currently disabled for Darwin.  The test
+    // suite shows a handful of test cases that fail this check for
+    // Darwin.  Those need to be investigated before this sanity test
+    // can be enabled for those subtargets.
+    if (!Subtarget.isDarwin()) {
+      unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
+      const MachineOperand &MO = MI->getOperand(OpNum);
+      if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4)
+        llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
+    }
+    // Now process the instruction normally.
+    break;
   }
+  }
 
   LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
   OutStreamer.EmitInstruction(TmpInst);
Index: lib/Target/PowerPC/PPCISelDAGToDAG.cpp
===================================================================
--- lib/Target/PowerPC/PPCISelDAGToDAG.cpp	(revision 185327)
+++ lib/Target/PowerPC/PPCISelDAGToDAG.cpp	(working copy)
@@ -1530,6 +1530,14 @@ void PPCDAGToDAGISel::PostprocessISelDAG() {
       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
         SDLoc dl(GA);
         const GlobalValue *GV = GA->getGlobal();
+        // We can't perform this optimization for data whose alignment
+        // is insufficient for the instruction encoding.
+        if (GV->getAlignment() < 4 &&
+            (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
+             StorageOpcode == PPC::LWA)) {
+          DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
+          continue;
+        }
         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
       } else if (ConstantPoolSDNode *CP =
                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {

llvm-svn: 185380
2013-07-01 20:52:27 +00:00
Hal Finkel 4ca70100de Fix a PPC rlwimi instruction-selection bug
Under certain (evidently rare) circumstances, this code used to convert OR(a,
AND(x, y)) into OR(a, x). This was incorrect.

While there, I've added a comment to the code immediately above.

llvm-svn: 185201
2013-06-28 20:00:07 +00:00
Ulrich Weigand d51c09f5d9 [PowerPC] Rename some more VK_PPC_ enums
This renames more VK_PPC_ enums, to make them more closely reflect
the @modifier string they represent.  This also prepares for adding
a bunch of new VK_PPC_ enums in upcoming patches.

For consistency, some MO_ flags related to VK_PPC_ enums are
likewise renamed.

No change in behaviour.

llvm-svn: 184547
2013-06-21 14:42:20 +00:00
Andrew Trick ef9de2a739 Track IR ordering of SelectionDAG nodes 2/4.
Change SelectionDAG::getXXXNode() interfaces as well as call sites of
these functions to pass in SDLoc instead of DebugLoc.

llvm-svn: 182703
2013-05-25 02:42:55 +00:00
Michael J. Spencer df1ecbd734 Replace Count{Leading,Trailing}Zeros_{32,64} with count{Leading,Trailing}Zeros.
llvm-svn: 182680
2013-05-24 22:23:49 +00:00
Ulrich Weigand 9d980cbdb9 [PowerPC] Use true offset value in "memrix" machine operands
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.

This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.

The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions.  This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).

Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.

This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.

This change must be made simultaneously in all places that
access machine operands of this type.  However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.

llvm-svn: 182032
2013-05-16 17:58:02 +00:00
Hal Finkel 25c1992bc7 Implement PPC counter loops as a late IR-level pass
The old PPCCTRLoops pass, like the Hexagon pass version from which it was
derived, could only handle some simple loops in canonical form. We cannot
directly adapt the new Hexagon hardware loops pass, however, because the
Hexagon pass contains a fundamental assumption that non-constant-trip-count
loops will contain a guard, and this is not always true (the result being that
incorrect negative counts can be generated). With this commit, we replace the
pass with a late IR-level pass which makes use of SE to calculate the
backedge-taken counts and safely generate the loop-count expressions (including
any necessary max() parts). This IR level pass inserts custom intrinsics that
are lowered into the desired decrement-and-branch instructions.

The most fragile part of this new implementation is that interfering uses of
the counter register must be detected on the IR level (and, on PPC, this also
includes any indirect branches in addition to function calls). Also, to make
all of this work, we need a variant of the mtctr instruction that is marked
as having side effects. Without this, machine-code level CSE, DCE, etc.
illegally transform the resulting code. Hopefully, this can be improved
in the future.

This new pass is smaller than the original (and much smaller than the new
Hexagon hardware loops pass), and can handle many additional cases correctly.
In addition, the preheader-creation code has been copied from LoopSimplify, and
after we decide on where it belongs, this code will be refactored so that it
can be explicitly shared (making this implementation even smaller).

The new test-case files ctrloop-{le,lt,ne}.ll have been adapted from tests for
the new Hexagon pass. There are a few classes of loops that this pass does not
transform (noted by FIXMEs in the files), but these deficiencies can be
addressed within the SE infrastructure (thus helping many other passes as well).

llvm-svn: 181927
2013-05-15 21:37:41 +00:00
Michael Liao b53d8963ce ArrayRefize getMachineNode(). No functionality change.
llvm-svn: 179901
2013-04-19 22:22:57 +00:00
Ulrich Weigand 35f9fdfdfd PowerPC: Remove ADDIL patterns.
The ADDI/ADDI8 patterns are currently duplicated into ADDIL/ADDI8L,
which describe the same instruction, except that they accept a
symbolLo[64] operand instead of a s16imm[64] operand.

This duplication confuses the asm parser, and it actually not really
needed, since symbolLo[64] already accepts immediate operands anyway.
So this commit removes the duplicate patterns.

No change in generated code.

llvm-svn: 178004
2013-03-26 10:55:20 +00:00
Ulrich Weigand e90b022468 Fix swapped BasePtr and Offset in pre-inc memory addresses.
PPCTargetLowering::getPreIndexedAddressParts currently provides
the base part of a memory address in the offset result, and the
offset part in the base result.  That swap is then undone again
when an MI instruction is generated (in PPCDAGToDAGISel::Select
for loads, and using .md Pat patterns for stores).

This patch reverts this double swap, to make common code and
back-end be in sync as to which part of the address is base
and which is offset.

To avoid performance regressions in certain cases, target code
now checks whether the choice of base register would be rejected
for pre-inc accesses by common code, and attempts to swap base
and offset again in such cases.  (Overall, this means that now
pre-ice accesses are generated *more* frequently than before.)

llvm-svn: 177733
2013-03-22 14:58:48 +00:00
Ulrich Weigand d1b99d350c Tighten iaddroff ComplexPattern.
The iaddroff ComplexPattern is supposed to recognize displacement
expressions that have been processed by a SelectAddressRegImm,
which means it needs to accept TargetConstant and TargetGlobalAddress
nodes.  Currently, it erroneously also accepts some other nodes,
in particular Constant and PPCISD::Lo.

While this problem is currently latent, it would cause wrong-code
bugs with a follow-on patch I'm about to commit, so this patch
tightens the ComplexPattern.  The equivalent change is made in
PPCDAGToDAGISel::Select, where pre-inc load patterns are handled
(as opposed to store patterns, the loads are handled in C++ code
without making use of the .td ComplexPattern).

llvm-svn: 177732
2013-03-22 14:58:17 +00:00
Ulrich Weigand e448badbb1 Remove the xaddroff ComplexPattern.
The xaddroff pattern is currently (mistakenly) used to recognize
the *base* register in pre-inc store patterns.  This patch replaces
those uses by ptr_rc_nor0 (as is elsewhere done to match the base
register of an address), and removes the now unused ComplexPattern.

llvm-svn: 177731
2013-03-22 14:57:48 +00:00
Hal Finkel 756810fe36 Implement builtin_{setjmp/longjmp} on PPC
This implements SJLJ lowering on PPC, making the Clang functions
__builtin_{setjmp/longjmp} functional on PPC platforms. The implementation
strategy is similar to that on X86, with the exception that a branch-and-link
variant is used to get the right jump address. Credit goes to Bill Schmidt for
suggesting the use of the unconditional bcl form (instead of the regular bl
instruction) to limit return-address-cache pollution.

Benchmarking the speed at -O3 of:

static jmp_buf env_sigill;

void foo() {
                __builtin_longjmp(env_sigill,1);
}

main() {
	...

        for (int i = 0; i < c; ++i) {
                if (__builtin_setjmp(env_sigill)) {
                        goto done;
                } else {
                        foo();
                }

done:;
        }

	...
}

vs. the same code using the libc setjmp/longjmp functions on a P7 shows that
this builtin implementation is ~4x faster with Altivec enabled and ~7.25x
faster with Altivec disabled. This comparison is somewhat unfair because the
libc version must also save/restore the VSX registers which we don't yet
support.

llvm-svn: 177666
2013-03-21 21:37:52 +00:00
Bill Schmidt 836c45badf Trivial cleanup
llvm-svn: 175771
2013-02-21 17:26:05 +00:00
Bill Schmidt 27917785ae Large code model support for PowerPC.
Large code model is identical to medium code model except that the
addis/addi sequence for "local" accesses is never used.  All accesses
use the addis/ld sequence.

The coding changes are straightforward; most of the patch is taken up
with creating variants of the medium model tests for large model.

llvm-svn: 175767
2013-02-21 17:12:27 +00:00