When sampleFDO is enabled, people may expect they can use
-fno-profile-sample-use to opt-out using sample profile for a certain file.
That could be either for debugging purpose or for performance tuning purpose.
However, when thinlto is enabled, if a function in file A compiled with
-fno-profile-sample-use is imported to another file B compiled with
-fprofile-sample-use, the inlined copy of the function in file B may still
get its profile annotated.
The inconsistency may even introduce profile unused warning because if the
target is not compiled with explicit debug information flag, the function
in file A won't have its debug information enabled (debug information will
be enabled implicitly only when -fprofile-sample-use is used). After it is
imported into file B which is compiled with -fprofile-sample-use, profile
annotation for the outline copy of the function will fail because the
function has no debug information, and that will trigger profile unused
warning.
We add a new attribute use-sample-profile to control whether a function
will use its sample profile no matter for its outline or inline copies.
That will make the behavior of -fno-profile-sample-use consistent.
Differential Revision: https://reviews.llvm.org/D79959
This patch addresses two issues related to adding inline functions to the import list while recursively going through the profiling data.
1. For callsite samples, only add an inlined function to the import list if it's from outside of the module (i.e. only has a declaration inside the module).
2. For body samples, add each target function to the import list if it's from outside of the module (i.e. only has a declaration inside the module). Previously we were using getSubProgram() to check whether it has dbg info, which is inaccurate. This fix properly add imports and could improve the quality of the pass.
Added a few changes to the test to catch these cases.
Differential Revision: https://reviews.llvm.org/D79379
them in a special text section.
For sampleFDO, because the optimized build uses profile generated from
previous release, previously we couldn't tell a function without profile
was truely cold or just newly created so we had to treat them conservatively
and put them in .text section instead of .text.unlikely. The result was when
we persuing the best performance by locking .text.hot and .text in memory,
we wasted a lot of memory to keep cold functions inside.
In https://reviews.llvm.org/D66374, we introduced profile symbol list to
discriminate functions being cold versus functions being newly added.
This mechanism works quite well for regular use cases in AutoFDO. However,
in some case, we can only have a partial profile when optimizing a target.
The partial profile may be an aggregated profile collected from many targets.
The profile symbol list method used for regular sampleFDO profile is not
applicable to partial profile use case because it may be too large and
introduce many false positives.
To solve the problem for partial profile use case, we provide an option called
--profile-unknown-in-special-section. For functions without profile, we will
still treat them conservatively in compiler optimizations -- for example,
treat them as warm instead of cold in inliner. When we use profile info to
add section prefix for functions, we will discriminate functions known to be
not cold versus functions without profile (being unknown), and we will put
functions being unknown in a special text section called .text.unknown.
Runtime system will have the flexibility to decide where to put the special
section in order to achieve a balance between performance and memory saving.
Differential Revision: https://reviews.llvm.org/D62540
Compbinary format uses MD5 to represent strings in name table. That gives smaller profile without the need of compression/decompression when writing/reading the profile. The patch adds the support in extbinary format. It is off by default but user can choose to enable it.
Note the feature of using MD5 in name table can bring very small chance of name conflict leading to profile mismatch. Besides, profile using the feature won't have the profile remapping support.
Differential Revision: https://reviews.llvm.org/D76255
Suppose an inline instance has hot total sample count but 0 entry count, and
it is an indirect call target. If the indirect call has no other call target
and inline instance associated with it and it is promoted, currently the
conditional branch generated by indirect call promotion will have invalid
branch profile which is !{!"branch_weights", i32 0, i32 0} -- because the
entry count of the promoted target is 0 and the total entry count of all
targets is also 0. This caused a SEGV in Control Height Reduction and may
cause problem in other passes.
Function entry count of an inline instance is computed by a heuristic --
using either the sample of the starting line or starting inner inline
instance. The patch changes the heuristic a little bit so that when total
sample count is larger than 0, the computed entry count will be at least 1.
Then the new branch profile will be !{!"branch_weights", i32 1, i32 0}.
Differential Revision: https://reviews.llvm.org/D72790
Summary: AutoFDO compilation has two places that do inlining - the sample profile loader that does inlining with context sensitive profile, and the regular inliner as CGSCC pass. Ideally we want most inlining to come from sample profile loader as that is driven by context sensitive profile and also retains context sensitivity after inlining. However the reality is most of the inlining actually happens during regular inliner. To track the number of inline instances from sample profile loader and help move more inlining to sample profile loader, I'm adding statistics and optimization remarks for sample profile loader's inlining.
Reviewers: wmi, davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70584
Summary:
Sample profile loader of AutoFDO tries to replay previous inlining using context sensitive profile. The replay only repeats inlining if the call site block is hot. As a result it punts inlining of small functions, some of which can be beneficial for size, and will still be inlined by CSGCC inliner later. The oscillation between sample profile loader's inlining and regular CGSSC inlining cause unnecessary loss of context-sensitive profile. It doesn't have much impact for inline decision itself, but it negatively affects post-inline profile quality as CGSCC inliner have to scale counts which is not as accurate as the original context sensitive profile, and bad post-inline profile can misguide code layout.
This change added regular Inline Cost calculation for sample profile loader, so we can inline small functions upfront under switch -sample-profile-inline-size. In addition -sample-profile-cold-inline-threshold is added so we can tune the separate size threshold - currently the default is chosen to be the same as regular inliner's cold call-site threshold.
Reviewers: wmi, davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70750
Summary:
AutoFDO's sample profile loader processes function in arbitrary source code order, so if I change the order of two functions in source code, the inline decision can change. This also prevented the use of context-sensitive profile to do specialization while inlining. This commit enforces SCC top-down order for sample profile loader. With this change, we can now do specialization, as illustrated by the added test case:
Say if we have A->B->C and D->B->C call path, we want to inline C into B when root inliner is B, but not when root inliner is A or D, this is not possible without enforcing top-down order. E.g. Once C is inlined into B, A and D can only choose to inline (B->C) as a whole or nothing, but what we want is only inline B into A and D, not its recursive callee C. If we process functions in top-down order, this is no longer a problem, which is what this commit is doing.
This change is guarded with a new switch "-sample-profile-top-down-load" for tuning, and it depends on D70653. Eventually, top-down can be the default order for sample profile loader.
Reviewers: wmi, davidxl
Subscribers: hiraditya, llvm-commits, tejohnson
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70655
Summary:
When sample profile loader decides not to inline a previously inlined call-site, we adjust the profile of outlined function simply by scaling up its profile counts by call-site count. This means the context-sensitive profile of that inlined instance will be thrown away. This commit try to keep context-sensitive profile for such cases:
- Instead of scaling outlined function's profile, we now properly merge the FunctionSamples of inlined instance into outlined function, including all recursively inlined profile.
- Instead of adjusting the profile for negative inline decision at the end of the sample profile loader pass, we do the profile merge right after processing each function. This change paired with top-down ordering of annotation/inline-replay (a separate diff) will make sure we recursively merge profile back before the profile is used for annotation and inline replay.
A new switch -sample-profile-merge-inlinee is added to enable the new profile merge for tuning. It should be the default behavior eventually.
Reviewers: wmi, davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70653
Summary:
When adjusting function entry counts after inlining, Funciton::setEntryCount is called without providing an import function list. The side effect of that is the previously set import function list will be dropped. The import function list is used by ThinLTO to help import hot cross module callee for LTO inlining, so dropping that during ThinLTO pre-link may adversely affect LTO inlining. The fix is to keep the list while updating entry counts for inlining.
Reviewers: wmi, davidxl, tejohnson
Subscribers: mehdi_amini, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69736
by ExtBinary format profile
Profile on-demand loading was added for ExtBinary format profile in rL374233,
but currently profile on-demand loading doesn't work well with profile
remapping. The patch adds the support.
Suppose a function in the current module has outline instance in the profile.
The function name in the module is different from the name of the outline
instance, but remapper knows the two names are equal. When loading profile
on-demand, the outline instance has to be loaded with remapper's help.
At the same time SampleProfileReaderItaniumRemapper is changed from a proxy
of SampleProfileReader to a helper member in SampleProfileReader.
Differential Revision: https://reviews.llvm.org/D68901
llvm-svn: 375295
in ExtBinary format
Currently for Text, Binary and ExtBinary format profiles, when we compile a
module with samplefdo, even if there is no function showing up in the profile,
we have to load all the function profiles from the profile input. That is a
waste of compile time.
CompactBinary format profile has already had the support of loading function
profiles on demand. In this patch, we add the support to load profile on
demand for ExtBinary format. It will work no matter the sections in ExtBinary
format profile are compressed or not. Experiment shows it reduces the time to
compile a server benchmark by 30%.
When profile remapping and loading function profiles on demand are both used,
extra work needs to be done so that the loading on demand process will take
the name remapping into consideration. It will be addressed in a follow-up
patch.
Differential Revision: https://reviews.llvm.org/D68601
llvm-svn: 374233
Previously ExtBinary profile format only supports compression using zlib for
profile symbol list. In this patch, we extend the compression support to any
section. User can select some or all of the sections to compress. In an
experiment, for a 45M profile in ExtBinary format, compressing name table
reduced its size to 24M, and compressing all the sections reduced its size
to 11M.
Differential Revision: https://reviews.llvm.org/D68253
llvm-svn: 373914
profile symbol list.
Currently many existing users using profile-sample-accurate want to reduce
code size as much as possible. Their use cases are different from the scenario
profile symbol list tries to handle -- the major motivation of adding profile
symbol list is to get the major memory/code size saving without introduce
performance regression. So to keep the behavior of profile-sample-accurate
unchanged, we think decoupling these two things and using a new flag to
control the handling of profile symbol list may be better.
When profile-sample-accurate and the new flag profile-accurate-for-symsinlist
are both present, since profile-sample-accurate is a user assertion we let it
have a higher precedence.
Differential Revision: https://reviews.llvm.org/D68047
llvm-svn: 373133
is available
In rL372232, we treated names showing up in profile as not cold when
profile-sample-accurate is enabled. This caused 70k size regression in
Chrome/Android. The patch put a guard and only enable the change when
profile symbol list is available, i.e., keep the old behavior when profile
symbol list is not available.
Differential Revision: https://reviews.llvm.org/D67931
llvm-svn: 372665
is enabled.
We can save memory and reduce binary size significantly by enabling
ProfileSampleAccurate. However when ProfileSampleAccurate is true,
function without sample will be regarded as cold and this could
potentially cause performance regression.
To minimize the potential negative performance impact, we want to be
a little conservative here saying if a function shows up in the profile,
no matter as outline instance, inline instance or call targets, treat
the function as not being cold. This will handle the cases such as most
callsites of a function are inlined in sampled binary (thus outline copy
don't get any sample) but not inlined in current build (because of source
code drift, imprecise debug information, or the callsites are all cold
individually but not cold accumulatively...), so that the outline function
showing up as cold in sampled binary will actually not be cold after current
build. After the change, such function will be treated as not cold even
profile-sample-accurate is enabled.
At the same time we lower the hot criteria of callsiteIsHot check when
profile-sample-accurate is enabled. callsiteIsHot is used to determined
whether a callsite is hot and qualified for early inlining. When
profile-sample-accurate is enabled, functions without profile will be
regarded as cold and much less inlining will happen in CGSCC inlining pass,
so we can worry less about size increase and be aggressive to allow more
early inlining to happen for warm callsites and it is helpful for performance
overall.
Differential Revision: https://reviews.llvm.org/D67561
llvm-svn: 372232
cold versus function being newly added.
This is the second half of https://reviews.llvm.org/D66374.
Profile symbol list is the collection of function symbols showing up in
the binary which generates the current profile. It is used to discriminate
function being cold versus function being newly added. Profile symbol list
is only added for profile with ExtBinary format.
During profile use compilation, when profile-sample-accurate is enabled,
a function without profile will be regarded as cold only when it is
contained in that list.
Differential Revision: https://reviews.llvm.org/D66766
llvm-svn: 370563
This is a patch split from https://reviews.llvm.org/D66374. It tries to add
a new format of profile called ExtBinary. The format adds a section header
table to the profile and organize the profile in sections, so the future
extension like adding a new section or extending an existing section will be
easier while keeping backward compatiblity feasible.
Differential Revision: https://reviews.llvm.org/D66513
llvm-svn: 369798
Removed extra parameter from !prof branch_weights metadata of
a call instruction according to the spec.
Differential Revision: https://reviews.llvm.org/D61932
llvm-svn: 360843
Summary:
Triple components in `XFAIL` lines are tested against the target triple.
Various tests that are expected to fail on big-endian hosts are marked
as being `XFAIL` for big-endian targets. This patch corrects these tests
by having them test against a new `host-byteorder-big-endian` feature.
Reviewers: xingxue, sfertile, jasonliu
Reviewed By: xingxue
Subscribers: jvesely, nhaehnle, fedor.sergeev, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60551
llvm-svn: 359689
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Summary: Currently ProfileSummaryBuilder doesn't count into callsite samples when computing total samples. Considering that ProfileSummaryInfo is used to checked the hotness of not only body samples but also callsite samples (from SampleProfileLoader), I think the callsite sample counts should be considered when computing total samples.
Reviewers: eraman, danielcdh, wmi
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59835
llvm-svn: 357627
Summary: It is possible that multiple indirect call targets have been promoted for a single callsite from the profiled binary. Current implementation repeats promotion for all these targets as far as the callsite itself is hot (the callsite is assumed to be hot if any one of these targets was "hot" during the profiling). However, even when one of the ICPed target is hot other targets may not, and we should not repeat promotion for "cold" targets.
Reviewers: danielcdh, wmi
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59940
llvm-svn: 357484
Summary:
Profile sample files include the number of times each entry or inlined
call site is sampled. This is translated into the entry count metadta
on functions.
When sample data is being read, if a call site that was inlined
in the sample program is considered cold and not inlined, then
the entry count of the out-of-line functions does not reflect
the current compilation.
In this patch, we note call sites where the function was not inlined
and as a last action of the sample profile loading, we update the
called function's entry count to reflect the calls from these
call sites which are not included in the profile file.
Reviewers: danielcdh, wmi, Kader, modocache
Reviewed By: wmi
Subscribers: davidxl, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D52845
llvm-svn: 352001
If the sample profile has no inlining hierachy information included, we call
the sample profile is flattened. For flattened profile, in ThinLTO postlink
phase, SampleProfileLoader's hot function inlining and profile annotation will
do nothing, so it is better to save the effort to read in the profile and run
the sample profile loader pass. It is helpful for reducing compile time when
the flattened profile is huge.
Differential Revision: https://reviews.llvm.org/D54819
llvm-svn: 351476
Currently we have pgo options defined in PassManagerBuilder.cpp only for
instrument pgo, but not for sample pgo. We also have pgo options defined
in NewPMDriver.cpp in opt only for new pass manager and for all kinds of
pgo. They have some inconsistency.
To make the options more consistent and make tests writing easier, the
patch let old pass manager to share the same pgo options with new pass
manager in opt, and removes the options in PassManagerBuilder.cpp.
Differential Revision: https://reviews.llvm.org/D56749
llvm-svn: 351392
ProfileSampleAccurate is used to indicate the profile has exact match to the
code to be optimized.
Previously ProfileSampleAccurate is handled in ProfileSummaryInfo::isColdCallSite
and ProfileSummaryInfo::isColdBlock. A better solution is to initialize function
entry count to 0 when ProfileSampleAccurate is true, so we don't have to handle
ProfileSampleAccurate in multiple places.
Differential Revision: https://reviews.llvm.org/D55660
llvm-svn: 349088
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
This is the LLVM side of Clang r344199.
Reviewers: davidxl, tejohnson, dlj, erik.pilkington
Subscribers: mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51249
llvm-svn: 344200
The patch saves a function offset table which maps function name index to the
offset of its function profile to the start of the binary profile. By using
the function offset table, for those function profiles which will not be used
when compiling a module, the profile reader does't have to read them. For
profile size around 10~20M, it saves ~10% compile time.
Differential Revision: https://reviews.llvm.org/D51863
llvm-svn: 342283
The patch tries to make sample profile loader independent of profile format
change. It moves compact format related code into FunctionSamples and
SampleProfileReader classes, and sample profile loader only has to interact
with those two classes and will be unaware of profile format changes.
The cleanup also contain some fixes to further remove the difference between
compactbinary format and binary format. After the cleanup using different
formats originated from the same profile will generate the same binaries,
which we verified by compiling two large server benchmarks w/wo thinlto.
Differential Revision: https://reviews.llvm.org/D51643
llvm-svn: 341591
getOrCompHotCountThreshold/getOrCompColdCountThreshold introduced in
https://reviews.llvm.org/D45377 contain a bad mistake and will only return 1 or 0
instead of the true hot/cold cutoff value. The patch fixes the mistake. But the
mistake seems not causing big performance difference according to internal server
benchmarks testing.
Differential Revision: https://reviews.llvm.org/D50370
llvm-svn: 339162
Name table occupies a big chunk of size in current binary format sample profile.
In order to reduce its size, the patch changes the sample writer/reader to
save/restore MD5Hash of names in the name table. Sample annotation phase will
also use MD5Hash of name to query samples accordingly.
Experiment shows compact binary format can reduce the size of sample profile by
2/3 compared with binary format generally.
Differential Revision: https://reviews.llvm.org/D47955
llvm-svn: 334447
We found current sampleFDO had a performance issue when triaging a regression.
For a callsite with inline instance in the profile, even if hot callsite inliner
cannot inline it, it may still execute enough times and should not be treated as
cold in regular inliner later. However, currently if such callsite is not inlined
by hot callsite inliner, and the BB where the callsite locates doesn't get
samples from other instructions inside of it, the callsite will have no profile
metadata annotated. In regular inliner cost analysis, if the callsite has no
profile annotated and its caller has profile information, it will be treated as
cold.
The fix changes the isCallsiteHot check and chooses to compare
CallsiteTotalSamples with hot cutoff value computed by ProfileSummaryInfo.
Differential Revision: https://reviews.llvm.org/D45377
llvm-svn: 332058
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Add powerpc- (32-bit) as XFAIL for tests that are documented either in-
line or via commit messages as expected to fail on big-endian systems.
Tests not documented in-line are documented in commit messages as
follows:
r211172 - test/tools/llvm-cov/llvm-cov.test
r247920 - test/Transforms/SampleProfile/gcc-simple.ll
llvm-svn: 322114
Summary:
In r277849, getEntryCount was changed to return None when the entry
count was 0, specifically for SamplePGO where it means no samples were
recorded. However, for instrumentation PGO a 0 entry count should be
returned directly, since it does mean that the function was completely
cold. Otherwise we end up treating these functions conservatively
in isFunctionEntryCold() and isColdBB().
Instead, for SamplePGO use -1 when there are no samples, and change
getEntryCount to return None when the value is -1.
Reviewers: danielcdh, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41307
llvm-svn: 321018
Summary: When computing the SUM for indirect call promotion, if the callsite is already promoted in the profile, it will be promoted before ICP. In the current implementation, ICP only sees remaining counts in SUM. This may cause extra indirect call targets being promoted. This patch updates the SUM to include the counts already promoted earlier. This way we do not end up promoting too many indirect call targets.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D38763
llvm-svn: 317502
Summary: In the compile phase of SamplePGO+ThinLTO, ICP is not invoked. Instead, indirect call targets will be included as function metadata for ThinIndex to buidl the call graph. This should not only include functions defined in other modules, but also functions defined in the same module, otherwise ThinIndex may find the callee dead and eliminate it, while ICP in backend will revive the symbol, which leads to undefined symbol.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D39480
llvm-svn: 317118
Summary: In the current implementation, we only have accurate profile count for standalone symbols. For inlined functions, we do not have entry count data because it's not available in LBR. In this patch, we use the first instruction's frequency to estimiate the function's entry count, especially for inlined functions. This may be inaccurate due to debug info in optimized code. However, this is a better estimate than the static 80/20 estimation we have in the current implementation.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D38478
llvm-svn: 315369
Summary: stripPointerCast is not reliably returning the value that's being type-casted. Instead it may look further at function attributes to further propagate the value. Instead of relying on stripPOintercast, the more reliable solution is to directly use the pointer to the promoted direct call.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D38603
llvm-svn: 315077
Summary: In SamplePGO, when an indirect call is promoted in the profiled binary, before profile annotation, it will be promoted and inlined. For the original indirect call, the current implementation will not mark VP profile on it. This is an issue when profile becomes stale. This patch annotates VP prof on indirect calls during annotation.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D38477
llvm-svn: 315016
Summary: In SamplePGO ThinLTO compile phase, we will not invoke ICP as it may introduce confusion to the 2nd annotation. This patch extracted that logic and makes it clearer before profile annotation. In the mean time, we need to make function importing process both inlined callsites as well as not promoted indirect callsites.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, mehdi_amini, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D38094
llvm-svn: 314619
Summary: In the ThinLTO compilation, if a function is inlined in the profiling binary, we need to inline it before annotation. If the callee is not available in the primary module, a first step is needed to import that callee function. For the current implementation, if the call is an indirect call, which has been promoted to >1 targets and inlined, SamplePGO will only import one target with the largest sample count. This patch fixed the bug to import all targets instead.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: sanjoy, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D36637
llvm-svn: 313678
Summary: Fix the bug when promoted call return type mismatches with the promoted function, we should not try to inline it. Otherwise it may lead to compiler crash.
Reviewers: davidxl, tejohnson, eraman
Reviewed By: tejohnson
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D38018
llvm-svn: 313658
Summary: SampleProfileLoader inlines hot functions if it is inlined in the profiled binary. However, the inline needs to be guarded by legality check, otherwise it could lead to correctness issues.
Reviewers: eraman, davidxl
Reviewed By: eraman
Subscribers: vitalybuka, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D37779
llvm-svn: 313277
Summary: SampleProfileLoader inlines hot functions if it is inlined in the profiled binary. However, the inline needs to be guarded by legality check, otherwise it could lead to correctness issues.
Reviewers: eraman, davidxl
Reviewed By: eraman
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D37779
llvm-svn: 313195
This change simplifies code that has to deal with
DIGlobalVariableExpression and mirrors how we treat DIExpressions in
debug info intrinsics. Before this change there were two ways of
representing empty expressions on globals, a nullptr and an empty
!DIExpression().
If someone needs to upgrade out-of-tree testcases:
perl -pi -e 's/(!DIGlobalVariableExpression\(var: ![0-9]*)\)/\1, expr: !DIExpression())/g' <MYTEST.ll>
will catch 95%.
llvm-svn: 312144
Summary:
The New Pass Manager infrastructure was forgetting to keep around the optimization remark yaml file that the compiler might have been producing. This meant setting the option to '-' for stdout worked, but setting it to a filename didn't give file output (presumably it was deleted because compilation didn't explicitly keep it). This change just ensures that the file is kept if compilation succeeds.
So far I have updated one of the optimization remark output tests to add a version with the new pass manager. It is my intention for this patch to also include changes to all tests that use `-opt-remark-output=` but I wanted to get the code patch ready for review while I was making all those changes.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33951
Reviewers: anemet, chandlerc
Reviewed By: anemet, chandlerc
Subscribers: javed.absar, chandlerc, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D36906
llvm-svn: 311271
Updating remark API to newer OptimizationDiagnosticInfo API. This
allows remarks to show up in diagnostic yaml file, and enables use
of opt-viewer tool.
Hotness information for remarks (L505 and L751) do not display hotness
information, most likely due to profile information not being
propagated yet. Unsure if this is the desired outcome.
Patch by Tarun Rajendran.
Differential Revision: https://reviews.llvm.org/D36127
llvm-svn: 310763
Summary: r305009 disables recursive inlining for indirect calls in sample loader pass. The same logic applies to direct recursive calls.
Reviewers: iteratee, davidxl
Reviewed By: iteratee
Subscribers: sanjoy, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D34456
llvm-svn: 305934
Summary: Early-inlining of recursive call makes the code size bloat exponentially. We should not disable it.
Reviewers: davidxl, dnovillo, iteratee
Reviewed By: iteratee
Subscribers: iteratee, llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D34017
llvm-svn: 305009
Summary: If there is suffix added in the function name (e.g. module hash added by thinLTO), we will not be able to find a match in profile as the suffix does not exist in profile. This patch build a map from function name to Function *. The map includes the entry for the stripped function name so that inlineHotFunctions can find the corresponding function to promote/inline.
Reviewers: davidxl, dnovillo, tejohnson
Reviewed By: davidxl
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D31952
llvm-svn: 300507
Summary: For iterative SamplePGO, an indirect call can be speculatively promoted to multiple direct calls and get inlined. All these promoted direct calls will share the same callsite location (offset+discriminator). With the current implementation, we cannot distinguish between different promotion candidates and its inlined instance. This patch adds callee_name to the key of the callsite sample map. And added helper functions to get all inlined callee samples for a given callsite location. This helps the profile annotator promote correct targets and inline it before annotation, and ensures all indirect call targets to be annotated correctly.
Reviewers: davidxl, dnovillo
Reviewed By: davidxl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31950
llvm-svn: 300240
Summary: Now the SamplePGO support is more stable, we do not need so many verbose optimization remarks emitted.
Reviewers: dnovillo, davidxl
Reviewed By: davidxl
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D31826
llvm-svn: 299883
Summary: ThinLTO will annotate the CFG twice. If the branch weight is set by the first annotation, we should not set the branch weight again in the second annotation because the first annotation is more accurate as there is less optimization that could affect debug info accuracy.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: mehdi_amini, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D31228
llvm-svn: 298602
Summary: We do not need that special handling because the debug info is more accurate now. Performance testing shows no regression on google internal benchmarks.
Reviewers: davidxl, aprantl
Reviewed By: aprantl
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D30658
llvm-svn: 297038
Summary: For SamplePGO, the profile may contain cross-module inline stacks. As we need to make sure the profile annotation happens when all the hot inline stacks are expanded, we need to pass this info to the module importer so that it can import proper functions if necessary. This patch implemented this feature by emitting cross-module targets as part of function entry metadata. In the module-summary phase, the metadata is used to build call edges that points to functions need to be imported.
Reviewers: mehdi_amini, tejohnson
Reviewed By: tejohnson
Subscribers: davidxl, llvm-commits
Differential Revision: https://reviews.llvm.org/D30053
llvm-svn: 296498
Summary: The discriminator has been encoded, and only the base discriminator should be used during profile matching.
Reviewers: dblaikie, davidxl
Reviewed By: dblaikie, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30218
llvm-svn: 295999
Summary: The CallTargetProfile should be added to FProfile to be consistent with other profile readers.
Reviewers: dnovillo, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30233
llvm-svn: 295852
A line number doesn't make much sense if you don't say where it's
from. Add a verifier check for this and update some tests that had
bogus debug info.
llvm-svn: 295516
Summary: Checking CS.getCalledFunction() == nullptr does not necessary indicate indirect call. We also need to check if CS.getCalledValue() is not a constant.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29570
llvm-svn: 294260
Summary: When type casting of the return value is needed, promoteIndirectCall will return the type casting instruction instead of the direct call. This patch changed to return the direct call instruction instead.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29569
llvm-svn: 294205
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 293657
Summary: In iterative sample pgo where profile is collected from PGOed binary, we may see indirect call targets promoted and inlined in the profile. Before profile annotation, we need to make this happen in order to annotate correctly on IR. This patch explicitly promotes these indirect calls and inlines them before profile annotation.
Reviewers: xur, davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29040
llvm-svn: 292979
This patch renumbers the metadata nodes in debug info testcases after
https://reviews.llvm.org/D26769. This is a separate patch because it
causes so much churn. This was implemented with a python script that
pipes the testcases through llvm-as - | llvm-dis - and then goes
through the original and new output side-by side to insert all
comments at a close-enough location.
Differential Revision: https://reviews.llvm.org/D27765
llvm-svn: 290292
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
Summary: SampleProfileLoader pass may be invoked twice by LTO. The 2nd pass should not append more summary info as it is already preset by the 1st pass.
Reviewers: eraman, davidxl
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D27733
llvm-svn: 289725
Summary: Now that we have more precise debug info, we should change back to use maximum to get basic block weight.
Reviewers: dnovillo
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D24788
llvm-svn: 282084
Summary: Callsites in the same basic block should share the same hotness. This patch checks for the hottest callsite in the same basic block, and use the hotness for all callsites in that basic block for early inline decisions. It also fixes the test to add "-S" so theat the "CHECK-NOT" is actually checking the content.
Reviewers: dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24734
llvm-svn: 281927
Summary: It does not make sense to set equal weights for all unkown branches as we have static branch prediction available.
Reviewers: dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24732
llvm-svn: 281912
Summary: The call target count profile is directly derived from LBR branch->target data. This is more reliable than instruction frequency profiles that could be moved across basic block boundaries. This patches uses call target count profile to annotate call instructions.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24410
llvm-svn: 281911
Summary: Previously we reline on inst-combine to remove inlinable invoke instructions. This causes trouble because a few extra optimizations are schedule early that could introduce too much CFG change (e.g. simplifycfg removes too much control flow). This patch handles invoke instruction in-place during sample profile annotation, so that we do not rely on instcombine to remove those invoke instructions.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24409
llvm-svn: 281870
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
Summary: The refined propagation algorithm is more accurate and robust.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23224
llvm-svn: 278522
Summary: Handle the case when there is only one incoming/outgoing edge for a visited basic block: use the block weight to adjust edge weight even when the edge has been visited before. This can help reduce inaccuracies introduced by incorrect basic block profile, as shown in the updated unittest.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22180
llvm-svn: 275072
Summary: As we will move to use uniformed hotness check in inliner, we do not need inline hints in SampleProfile pass any more.
Reviewers: dnovillo, davidxl
Subscribers: eraman, llvm-commits
Differential Revision: http://reviews.llvm.org/D19287
llvm-svn: 274918
Summary: Set ProfileSummary in SampleProfilerLoader.
Reviewers: davidxl, eraman
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21702
llvm-svn: 273745
Summary: Inliner needs ACT when calling InlineFunction. Instead of nullptr, we need to pass it in from SampleProfileLoader
Reviewers: davidxl
Subscribers: eraman, vsk, danielcdh, llvm-commits
Differential Revision: http://reviews.llvm.org/D21205
llvm-svn: 273199
Summary:
Instead of using maximum IR weight as the basic block weight, this patch uses the voting algorithm to find the most likely weight for the basic block. This can effectively avoid the cases when some IRs are annotated incorrectly due to code motion of the profiled binary.
This patch also updates propagate.ll unittest to include discriminator in the input file so that it is testing something meaningful.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19301
llvm-svn: 267519
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
Summary: SampleProfile pass needs to be performed after InstructionCombiningPass, which helps eliminate un-inlinable function calls.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17742
llvm-svn: 262419
This adds two thresholds to the sample profiler to affect inlining
decisions: the concept of global hotness and coldness.
Functions that have accumulated more than a certain fraction of samples at
runtime, are annotated with the InlineHint attribute. Conversely,
functions that accumulate less than a certain fraction of samples, are
annotated with the Cold attribute.
This is very similar to the hints emitted by Clang when using
instrumentation profiles.
Notice that this is a very blunt instrument. A function may have
globally collected a significant fraction of samples, but that does not
necessarily mean that every callsite for that function is hot.
Ideally, we would annotate each callsite with the samples collected at
that callsite. This way, the inliner can incorporate all these weights
into its cost model.
Once the inliner offers this functionality, we can change the hints
emitted here to a more precise per-callsite annotation. For now, this is
providing some measure of speedups with our internal benchmarks. I've
observed speedups of up to 23% (though the geo mean is about 3%). I expect
these numbers to improve as the inliner gets better annotations.
llvm-svn: 254212
When the original binary is executed and sampled, the resulting profile
contains information on the original inline stack. We currently follow
the original inline plan if we notice that the inlined callsite has more
than 0 samples to it.
A better way is to determine whether the callsite is actually worth
inlining. If the callsite accumulates a small fraction of the samples
spent in the parent function, then we don't want to bother inlining it
(as it means that the callsite is actually cold).
This patch introduces a threshold expressed in percentage of samples
in relation to the parent function. If the callsite uses less than N%
of the total samples used by its parent, the original inline decision is
not re-applied.
I've set the threshold to the very arbitrary value of 5%. I'm yet to do
any actual experiments to see what's a good value. I wanted to separate
the basic mechanism from the tuning.
llvm-svn: 254034
The existing coverage tracker counts the number of records that were used
from the input profile. An alternative view of coverage is to check how
many available samples were applied.
This way, if the profile contains several records with few samples, it
doesn't really matter much that they were not applied. The more
interesting records to apply are the ones that contribute many samples.
llvm-svn: 253912
If a function was originally inlined but not actually hot at runtime,
its samples will not be counted inside the parent function. This throws
off the coverage calculation because it expects to find more used
records than it should.
Fixed by ignoring functions that will not be inlined into the parent.
Currently, this is inlined functions with 0 samples. In subsequent
patches, I'll change this to mean "cold" functions.
llvm-svn: 253716
While debugging some sampling coverage problems, I found this useful:
When applying samples from a profile, it helps to also know what line
offset and discriminator the sample belongs to. This makes it easy to
correlate against the input profile.
llvm-svn: 253670
Summary:
This change addresses two possible instances of user error / confusion when
merging sampled profile data.
Previously any input that didn't match the raw or processed instrumented format
would automatically be interpreted as instrumented profile text format data.
No error would be reported during the merge.
Example:
If foo-sampled.profdata and bar-sampled.profdata are binary sampled profiles:
Old behavior:
$ llvm-profdata merge foo-sampled.profdata bar-sampled.profdata -output foobar-sampled.profdata
$ llvm-profdata show -sample foobar-sampled.profdata
error: foobar-sampled.profdata:1: Expected 'mangled_name:NUM:NUM', found lprofi
This change adds basic checks for valid input data when assuming text input.
It also makes error messages related to file format validity more specific about
the assumbed profile data type.
New behavior:
$ llvm-profdata merge foo-sampled.profdata bar-sampled.profdata -o foobar-sampled.profdata
error: foo.profdata: Unrecognized instrumentation profile encoding format
Perhaps you forgot to use the -sample option?
Reviewers: bogner, davidxl, dnovillo
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D14558
llvm-svn: 253009
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
The initial coverage checking code for sample records failed to count
records inside inlined profiles. This change fixes the oversight.
llvm-svn: 251752
This adds the flag -mllvm -sample-profile-check-coverage=N to the
SampleProfile pass. N is the percent of input sample records that the
user expects to apply. If the pass does not use N% (or more) of the
sample records in the input, it emits a warning.
This is useful to detect some forms of stale profiles. If the code has
drifted enough from the original profile, there will be records that do
not match the IR anymore.
This will not detect cases where a sample profile record for line L is
referring to some other instructions that also used to be at line L.
llvm-svn: 251568
When emitting a remark for a conditional branch annotation, the remark
uses the line location information of the conditional branch in the
message. In some cases, that information is unavailable and the
optimization would segfaul. I'm still not sure whether this is a bug or
WAI, but the optimizer should not die because of this.
llvm-svn: 251420
This adds a couple of optimization remarks to the SamplePGO
transformation. When it decides to inline a hot function (to mimic the
inline stack and repeat useful inline decisions in the original build).
It will also report branch destinations. For instance, given the code
fragment:
6 if (i < 1000)
7 sum -= i;
8 else
9 sum += -i * rand();
If the 'else' branch is taken most of the time, building this code with
-Rpass=sample-profile will produce:
a.cc:9:14: remark: most popular destination for conditional branches at small.cc:6:9 [-Rpass=sample-profile]
sum += -i * rand();
^
llvm-svn: 251330
In some cases (as illustrated in the unittest), lineno can be less than the heade_lineno because the function body are included from some other files. In this case, offset will be negative. This patch makes clang still able to match the profile to IR in this situation.
http://reviews.llvm.org/D13914
llvm-svn: 250873
The number of samples collected at the head of a function only make
sense for top-level functions (i.e., those actually called as opposed to
being inlined inside another).
Head samples essentially count the time spent inside the function's
prologue. This clearly doesn't make sense for inlined functions, so we
were always emitting 0 in those.
llvm-svn: 250539
Binary encoded profiles used to encode all function names inline at
every reference. This is clearly suboptimal in terms of space. This
patch fixes this by adding a name table to the header of the file.
llvm-svn: 250241
With this patch we can now read and write inline stacks in sample
profiles to the binary encoded profiles.
In a subsequent patch, I will add a string table to the binary encoding.
Right now function names are emitted as strings every time we find them.
This is too bloated and will produce large files in applications with
lots of inlining.
llvm-svn: 249861
BranchProbability now is represented by its numerator and denominator in uint32_t type. This patch changes this representation into a fixed point that is represented by the numerator in uint32_t type and a constant denominator 1<<31. This is quite similar to the representation of BlockMass in BlockFrequencyInfoImpl.h. There are several pros and cons of this change:
Pros:
1. It uses only a half space of the current one.
2. Some operations are much faster like plus, subtraction, comparison, and scaling by an integer.
Cons:
1. Constructing a probability using arbitrary numerator and denominator needs additional calculations.
2. It is a little less precise than before as we use a fixed denominator. For example, 1 - 1/3 may not be exactly identical to 1 / 3 (this will lead to many BranchProbability unit test failures). This should not matter when we only use it for branch probability. If we use it like a rational value for some precise calculations we may need another construct like ValueRatio.
One important reason for this change is that we propose to store branch probabilities instead of edge weights in MachineBasicBlock. We also want clients to use probability instead of weight when adding successors to a MBB. The current BranchProbability has more space which may be a concern.
Differential revision: http://reviews.llvm.org/D12603
llvm-svn: 248633
This test uses a gcov file generated in a little-endian host. The gcov
reader does not allow different endianness, so the test fails on big
endian hosts.
XFAILing for now.
llvm-svn: 247920
This adds enough machinery to support reading simple GCC AutoFDO
profiles. It now supports reading flat profiles (no function calls).
Subsequent patches will add support for:
- Inlined calls (in particular, the inline call stack is not traversed
to accumulate samples).
- Working sets and modules. These are used mostly for GCC's LIPO
optimizations, so they're not needed in LLVM atm. I'm not sure that
we will ever need them. For now, I've if0'd around the calls.
The patch also adds support in GCOV.h for gcov version V704 (generated
by GCC's profile conversion tool).
llvm-svn: 247874
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This patch uses the new function profile metadata "function_entry_count"
to annotate entry counts from sample profiles.
In a sampling profile, the total samples collected at the function entry
are an approximation for the number of times that function was invoked.
llvm-svn: 237265
Summary:
When computing branch weights in BPI, we used to disallow branches with
weight 0. This is a minor nuisance, because a branch with weight 0 is
different to "don't have information". In the context of
instrumentation, it may mean "never executed", in the context of
sampling, it means "never or seldom executed".
In allowing 0 weight branches, I ran into issues with the switch
expansion code in selection DAG. It is currently hardwired to not handle
branches with weight 0. To maintain the current behaviour, I changed it
to use 1 when it finds 0, but perhaps the algorithm needs changes to
tolerate branches with weight zero.
Reviewers: hansw
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9533
llvm-svn: 236617
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Fix debug info in these tests, which started failing with a WIP patch to
verify compile units and types. The problems look like they were all
caused by bitrot. They fell into these categories:
- Using `!{i32 0}` instead of `!{}`.
- Using `!{null}` instead of `!{}`.
- Using `!MDExpression()` instead of `!{}`.
- Using `!8` instead of `!{!8}`.
- `file:` references that pointed at `MDCompileUnit`s instead of the
same `MDFile` as the compile unit.
- `file:` references that were numerically off-by-one or (off-by-ten).
llvm-svn: 233415
As part of PR22777, fix testcases that fail the debug info verifier.
The changes fall into the following categories:
- Empty `filename:` fields in `MDFile`s. Compile units and some types
require non-empty filenames. A number of testcases have empty
filenames, probably due to hand-reduction of testcases.
- Not-quite empty arrays: `!{i32 0}`. This used to be equivalent in
the debug info schema to `!{}`. They cause problems for
`!MDSubroutineType`'s `types:` array, since it requires all operands
to be valid types. (Note that `!{null}` is the correct type array
for functions that take no arguments and return `void`.)
- Significantly bitrotted testcases. Nodes got left behind a few
upgrades ago because of missing or invalid tags.
llvm-svn: 232415
Verify that debug info intrinsic arguments are valid. (These checks
will not recurse through the full debug info graph, so they don't need
to be cordoned of in `DebugInfoVerifier`.)
With those checks in place, changing the `DbgIntrinsicInst` accessors to
downcast to `MDLocalVariable` and `MDExpression` is natural (added isa
specializations in `Metadata.h` to support this).
Added tests to `test/Verifier` for the new -verify checks, and fixed the
debug info in all the in-tree tests.
If you have out-of-tree testcases that have started to fail to -verify,
hopefully the verify checks are helpful. The most likely problem is
that the expression argument is `!{}` (instead of `!MDExpression()`).
llvm-svn: 232296
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
llvm-svn: 231082
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
llvm-svn: 226048
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257