We previously avoided inserting these moves during isel in a few cases which is implemented using a whitelist of opcodes. But it's too difficult to generate a perfect list of opcodes to whitelist. Especially with AVX512F without AVX512VL using 512 bit vectors to implement some 128/256 bit operations. Since isel is done bottoms up, we'd have to check the VT and opcode and subtarget in order to determine whether an EXTRACT_SUBREG would be generated for some operations.
So instead of doing that, this patch adds a post processing step that detects when the moves are unnecesssary after isel. At that point any EXTRACT_SUBREGs would have already been created and appear in the DAG. So then we just need to ensure the input to the move isn't one.
Differential Revision: https://reviews.llvm.org/D44289
llvm-svn: 327724
r327171 "Improve Dependency analysis when doing multi-node Instruction Selection"
r328170 "[DAG] Enforce stricter NodeId invariant during Instruction selection"
Reverting patch as NodeId invariant change is causing pathological
increases in compile time on PPC
llvm-svn: 327197
Relanding after fixing NodeId Invariant.
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 327171
Re-enable commit r323991 now that r325931 has been committed to make
MachineOperand::isRenamable() check more conservative w.r.t. code
changes and opt-in on a per-target basis.
llvm-svn: 326208
Which types are considered 'simple' is a function of the requirements of all targets that LLVM supports. That shouldn't directly affect what types we are able to handle. The remainder of this code checks that the number of elements is a power of 2 and takes care of splitting down to a legal size.
llvm-svn: 326063
Sadly, r324359 caused at least PR36312. There is a patch out for review
but it seems to be taking a bit and we've already had these crashers in
tree for too long. We're hitting this PR in real code now and are
blocked on shipping new compilers as a consequence so I'm reverting us
back to green.
Sorry for the churn due to the stacked changes that I had to revert. =/
llvm-svn: 325420
Instruction Selection
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 324359
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Similar to the existing code to lower to PACKSS, we can use PACKUS if the input vector's leading zero bits extend all the way to the packed/truncated value.
We have to account for pre-SSE41 targets not supporting PACKUSDW
llvm-svn: 317315
Similar to the existing code to lower to PACKSS, we can use PACKUS if the input vector's leading zero bits extend all the way to the packed/truncated value.
We have to account for pre-SSE41 targets not supporting PACKUSDW
llvm-svn: 317128
So far we've only been using PACKSS truncations with 'all-bits or zero-bits' patterns (vector comparison results etc.). When really we can safely use it for any case as long as the number of sign bits reach down to the last 16-bits (or 8-bits if we're truncating to bytes).
The next steps after this is add the equivalent support for PACKUS and to support packing to sub-128 bit vectors for truncating stores etc.
Differential Revision: https://reviews.llvm.org/D39476
llvm-svn: 317086
Issues addressed since original review:
- Avoid bug in regalloc greedy/machine verifier when forwarding to use
in an instruction that re-defines the same virtual register.
- Fixed bug when forwarding to use in EarlyClobber instruction slot.
- Fixed incorrect forwarding to register definitions that showed up in
explicit_uses() iterator (e.g. in INLINEASM).
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 314729
Issues addressed since original review:
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 312328
It caused PR34387: Assertion failed: (RegNo < NumRegs && "Attempting to access record for invalid register number!")
> Issues identified by buildbots addressed since original review:
> - Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
> - The pass no longer forwards COPYs to physical register uses, since
> doing so can break code that implicitly relies on the physical
> register number of the use.
> - The pass no longer forwards COPYs to undef uses, since doing so
> can break the machine verifier by creating LiveRanges that don't
> end on a use (since the undef operand is not considered a use).
>
> [MachineCopyPropagation] Extend pass to do COPY source forwarding
>
> This change extends MachineCopyPropagation to do COPY source forwarding.
>
> This change also extends the MachineCopyPropagation pass to be able to
> be run during register allocation, after physical registers have been
> assigned, but before the virtual registers have been re-written, which
> allows it to remove virtual register COPY LiveIntervals that become dead
> through the forwarding of all of their uses.
llvm-svn: 312178
Issues identified by buildbots addressed since original review:
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 312154
Two issues identified by buildbots were addressed:
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa
Subscribers: jyknight, nemanjai, llvm-commits, nhaehnle, mcrosier, mgorny
Differential Revision: https://reviews.llvm.org/D30751
llvm-svn: 311135
This reverts commit r311038.
Several buildbots are breaking, and at least one appears to be due to
the forwarding of physical regs enabled by this change. Reverting while
I investigate further.
llvm-svn: 311062
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa
Subscribers: jyknight, nemanjai, llvm-commits, nhaehnle, mcrosier, mgorny
Differential Revision: https://reviews.llvm.org/D30751
llvm-svn: 311038
We were already using the 32 bit element opcode if BWI isn't enabled, but there's no reason to change opcode if we have BWI. We will still use the 8/16 opcodes for masked stores though.
This allows us to use the aligned opcode when we can which makes our test output more consistent between different modes. It also reduces the number of isel patterns we need.
This is a slight inconsistency with loads which default to 64 bit element opcodes. I'll probably rectify that in a future patch.
Differential Revision: https://reviews.llvm.org/D35978
llvm-svn: 309693
These were taking priority over the aligned load instructions since there is no vmovda8/16. I don't think there is really a difference between aligned and unaligned on newer cpus so I don't think it matters which instructions we use.
But with this change we reduce the size of the isel table a little and we allow the aligned information to pass through to the evex->vec pass and produce the same output has avx/avx2 in some cases.
I also generally dislike patterns rooted in a bitcast which these were.
Differential Revision: https://reviews.llvm.org/D35977
llvm-svn: 309589
Summary:
When broadcasting from the constant pool its useful to print out the final vector similar to what we do for normal moves from the constant pool.
I changed only a couple tests that were broadcast focused. One of them had been previously hand tweaked after running the script so that it could check the constant pool declaration. But I think this patch makes that unnecessary now since we can check the comment instead.
Reviewers: spatel, RKSimon, zvi
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34923
llvm-svn: 307062
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.
Majority of the changes in this patch:
1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.
These changes are target independent and described below.
Changed CFI instructions so that they:
1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal
Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.
Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D18046
llvm-svn: 306529
Convert vector increment or decrement to sub/add with an all-ones constant:
add X, <1, 1...> --> sub X, <-1, -1...>
sub X, <1, 1...> --> add X, <-1, -1...>
The all-ones vector constant can be materialized using a pcmpeq instruction that is
commonly recognized as an idiom (has no register dependency), so that's better than
loading a splat 1 constant.
AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better
way to produce 512 one-bits.
The general advantages of this lowering are:
1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables,
so in theory, this could be better for perf, but...
2. That seems unlikely to affect any OOO implementation, and I can't measure any real
perf difference from this transform on Haswell or Jaguar, but...
3. It doesn't look like it from the diffs, but this is an overall size win because we
eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting
a scalar load (which might itself be a bug), then we're replacing a scalar constant
load + broadcast with a single cheap op, so that should always be smaller/better too.
4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1
and psub x, -1, so we should use that form for +1 too because we can. If there's some
reason to favor a constant load on some CPU, let's make the reverse transform for all
of these cases (either here in the DAG or in a later machine pass).
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=33483
Differential Revision: https://reviews.llvm.org/D34336
llvm-svn: 306289
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 304371
This also reverts follow-ups r303292 and r303298.
It broke some Chromium tests under MSan, and apparently also internal
tests at Google.
llvm-svn: 303369
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 302938
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
Similar was already done for several other shuffles in this function.
The test changes are because the old code used explicity zeroing for elements that could have been undef.
While I was here I also changed other shuffle vectors in the same function to use the same input twice instead of creating UNDEF nodes. getVectorShuffle can create the UNDEF for us.
llvm-svn: 294130
Check if a build_vector node includes a repeated constant pattern and replace it with a broadcast of that pattern.
For example:
"build_vector <0, 1, 2, 3, 0, 1, 2, 3>" would be replaced by "broadcast <0, 1, 2, 3>"
Differential Revision: https://reviews.llvm.org/D26802
llvm-svn: 288804
Choosing a "cfi" name makes the intend a bit clearer in an assembly dump
and more importantly the assembly dumps are slightly more stable as the
numbers don't move around anymore when unrelated code calls
createTempSymbol() more or less often.
As they are temp labels the name doesn't influence the generated object
code.
Differential Revision: https://reviews.llvm.org/D27244
llvm-svn: 288290
Fix VPAVG detection to require AVX512BW, not AVX512F for 512-bit widths,
and change associated asserts to assert in the right direction...
This fixes PR29111.
llvm-svn: 279755
This patch detects the AVG pattern in vectorized code, which is simply
c = (a + b + 1) / 2, where a, b, and c have the same type which are vectors of
either unsigned i8 or unsigned i16. In the IR, i8/i16 will be promoted to
i32 before any arithmetic operations. The following IR shows such an example:
%1 = zext <N x i8> %a to <N x i32>
%2 = zext <N x i8> %b to <N x i32>
%3 = add nuw nsw <N x i32> %1, <i32 1 x N>
%4 = add nuw nsw <N x i32> %3, %2
%5 = lshr <N x i32> %N, <i32 1 x N>
%6 = trunc <N x i32> %5 to <N x i8>
and with this patch it will be converted to a X86ISD::AVG instruction.
The pattern recognition is done when combining instructions just before type
legalization during instruction selection. We do it here because after type
legalization, it is much more difficult to do pattern recognition based
on many instructions that are doing type conversions. Therefore, for
target-specific instructions (like X86ISD::AVG), we need to take care of type
legalization by ourselves. However, as X86ISD::AVG behaves similarly to
ISD::ADD, I am wondering if there is a way to legalize operands and result
types of X86ISD::AVG together with ISD::ADD. It seems that the current design
doesn't support this idea.
Tests are added for SSE2, AVX2, and AVX512BW and both i8 and i16 types of
variant vector sizes.
Differential revision: http://reviews.llvm.org/D14761
llvm-svn: 253952