The patch adds a switch to enable emitting debug info in the 64-bit
DWARF format. Most emitter for sections will be updated in the subsequent
patches, whereas for .debug_line and .debug_frame the emitters are in
the MC library, which is already updated.
For now, the switch is enabled only for 64-bit ELF targets.
Differential Revision: https://reviews.llvm.org/D87011
DW_FORM_sec_offset and DW_FORM_strp imply values of different sizes with
DWARF32 and DWARF64. The patch fixes DIE value classes to use correct
sizes when emitting their values. For DIELocList it ensures that the
requested DWARF form matches the current DWARF format because that class
uses a method that selects the size automatically.
Differential Revision: https://reviews.llvm.org/D87009
These methods are used to emit values which are 32-bit in DWARF32 and
64-bit in DWARF64. The patch fixes them so that they choose the length
automatically, depending on the DWARF format set in the Context.
Differential Revision: https://reviews.llvm.org/D87008
This patch introduces the new .bb_addr_map section feature which allows us to emit the bits needed for mapping binary profiles to basic blocks into a separate section.
The format of the emitted data is represented as follows. It includes a header for every function:
| Address of the function | -> 8 bytes (pointer size)
| Number of basic blocks in this function (>0) | -> ULEB128
The header is followed by a BB record for every basic block. These records are ordered in the same order as MachineBasicBlocks are placed in the function. Each BB Info is structured as follows:
| Offset of the basic block relative to function begin | -> ULEB128
| Binary size of the basic block | -> ULEB128
| BB metadata | -> ULEB128 [ MBB.isReturn() OR MBB.hasTailCall() << 1 OR MBB.isEHPad() << 2 ]
The new feature will replace the existing "BB labels" functionality with -basic-block-sections=labels.
The .bb_addr_map section scrubs the specially-encoded BB symbols from the binary and makes it friendly to profilers and debuggers.
Furthermore, the new feature reduces the binary size overhead from 70% bloat to only 12%.
For more information and results please refer to the RFC: https://lists.llvm.org/pipermail/llvm-dev/2020-July/143512.html
Reviewed By: MaskRay, snehasish
Differential Revision: https://reviews.llvm.org/D85408
Add a DBG_INSTR_REF instruction and a "debug instruction number" field to
MachineInstr. The two allow variable values to be specified by
identifying where the value is computed, rather than the register it lies
in, like so:
%0 = fooinst, debug-instr-number 1
[...]
DBG_INSTR_REF 1, 0
See the original RFC for motivation:
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139440.html
This patch is NFCI; it only adds fields and other boiler plate.
Differential Revision: https://reviews.llvm.org/D85741
This is to fix CodeView build failure https://bugs.llvm.org/show_bug.cgi?id=47287
after DIsSubrange upgrade D80197
Assert condition is now removed and Count is calculated in case LowerBound
is absent or zero and Count or UpperBound is constant. If Count is unknown
it is later handled as VLA (currently Count is set to zero).
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87406
a warning about clobbering reserved registers (NFC).
Also address some minor inefficiencies and style issues.
Differential Revision: https://reviews.llvm.org/D86088
As stated in section 6.1.1.2, DWARFv5, p. 142,
| The last entry for each name is followed by a zero byte that
| terminates the list. There may be gaps between the lists.
The patch changes emitting a 4-byte zero value to a 1-byte one, which
effectively removes the gap between entry lists, and thus saves
approximately 3 bytes per name; the calculation is not exact because
the total size of the table is aligned to 4.
Differential Revision: https://reviews.llvm.org/D86927
The member is not in use; the unit length for the table is emitted as
a difference between two labels. Moreover, the type of the member might
be misleading, because for DWARF64 the field should be 64 bit long.
Differential Revision: https://reviews.llvm.org/D86912
This reverts commit b9d977b0ca.
This cutoff is no longer required. The commit 34ffa7fc501 (D86153) introduces a
performance improvement which was tested against the motivating case for this
patch.
Discussed in differential revision: https://reviews.llvm.org/D86153
Almost NFC (see end).
The backwards scan in validThroughout significantly contributed to compile time
for a pathological case, causing the 'X86 Assembly Printer' pass to account for
roughly 70% of the run time. This patch guards the loop against running
unnecessarily, bringing the pass contribution down to 4%.
Almost NFC: There is a hack in validThroughout which promotes single constant
value DBG_VALUEs in the prologue to be live throughout the function. We're more
likely to hit this code path with this patch applied. Similarly to the parent
patches there is a small coverage change reported in the order of 10s of bytes.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D86153
With the changes introduced in D86151 we can now check for single locations
which span multiple blocks for inlined scopes and blocks.
D86151 introduced the InstructionOrdering parameter, replacing a scan through
MBB instructions. The functionality to compare instruction positions across
blocks was add there, and this patch just removes the exit checks that were
previously (but no longer) required.
CTMark shows a geomean binary size reduction of 2.2% for RelWithDebInfo builds.
llvm-locstats (using D85636) shows a very small variable location coverage
change in 5 of 10 binaries, but just like in D86151 it is only in the order of
10s of bytes.
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D86152
With this patch we're now accounting for two more cases which should be
considered 'valid throughout': First, where RangeEnd is ScopeEnd. Second, where
RangeEnd comes before ScopeEnd when including meta instructions, but are both
preceded by the same non-meta instruction.
CTMark shows a geomean binary size reduction of 1.5% for RelWithDebInfo builds.
`llvm-locstats` (using D85636) shows a very small variable location coverage
change in 2 of 10 binaries, but it is in the order of 10s of bytes which lines
up with my expectations.
I've added a test which checks both of these new cases. The first check in the
test isn't strictly necessary for this patch. But I'm not sure that it is
explicitly tested anywhere else, and is useful for the final patch in the
series.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D86151
Group the map and methods used to query instruction ordering for trimVarLocs
(D82129) into a class. This will make it easier to reuse the functionality
upcoming patches.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D86150
This patch adds type information for SVE ACLE vector types,
by describing them as vectors, with a lower bound of 0, and
an upper bound described by a DWARF expression using the
AArch64 Vector Granule register (VG), which contains the
runtime multiple of 64bit granules in an SVE vector.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86101
This patch adds support for representing Fortran `character(n)`.
Primarily patch is based out of D54114 with appropriate modifications.
Test case IR is generated using our downstream classic-flang. We're in process
of upstreaming flang PR's but classic-flang has dependencies on llvm, so
this has to get in first.
Patch includes functional test case for both IR and corresponding
dwarf, furthermore it has been manually tested as well using GDB.
Source snippet:
```
program assumedLength
call sub('Hello')
call sub('Goodbye')
contains
subroutine sub(string)
implicit none
character(len=*), intent(in) :: string
print *, string
end subroutine sub
end program assumedLength
```
GDB:
```
(gdb) ptype string
type = character (5)
(gdb) p string
$1 = 'Hello'
```
Reviewed By: aprantl, schweitz
Differential Revision: https://reviews.llvm.org/D86305
The byte swapping, when dealing with 4 byte (float) FP constants
in DwarfExpression::addConstantFP, added in commit ef8992b9f0
was not correct. It always performed byte swapping using an
uint64_t value. When dealing with 4 byte values the 4 interesting
bytes ended up in the big end of the uint64_t, but later we emitted
the 4 bytes at the little end. So we ended up with zeroes being
emitted and faulty debug information.
This patch simplifies things a bit, IMHO. Using the APInt
representation throughout the function, instead of looking at
the internal representation using getRawBytes and without using
reinterpret_cast etc. And using API.byteSwap() should result in
correct byte swapping independent of APInt being 4 or 8 bytes.
Differential Revision: https://reviews.llvm.org/D86272
This patch was reverted in 7c182663a8 due to some failures
observed on PCC based machines. Failures were due to Endianness issue and
long double representation issues.
Patch is revised to address Endianness issue. Furthermore, support
for emission of `DW_OP_implicit_value` for `long double` has been removed
(since it was unclean at the moment). Planning to handle this in
a clean way soon!
For more context, please refer to following review link.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83560
llvm is missing support for DW_OP_implicit_value operation.
DW_OP_implicit_value op is indispensable for cases such as
optimized out long double variables.
For intro refer: DWARFv5 Spec Pg: 40 2.6.1.1.4 Implicit Location Descriptions
Consider the following example:
```
int main() {
long double ld = 3.14;
printf("dummy\n");
ld *= ld;
return 0;
}
```
when compiled with tunk `clang` as
`clang test.c -g -O1` produces following location description
of variable `ld`:
```
DW_AT_location (0x00000000:
[0x0000000000201691, 0x000000000020169b): DW_OP_constu 0xc8f5c28f5c28f800, DW_OP_stack_value, DW_OP_piece 0x8, DW_OP_constu 0x4000, DW_OP_stack_value, DW_OP_bit_piece 0x10 0x40, DW_OP_stack_value)
DW_AT_name ("ld")
```
Here one may notice that this representation is incorrect(DWARF4
stack could only hold integers(and only up to the size of address)).
Here the variable size itself is `128` bit.
GDB and LLDB confirms this:
```
(gdb) p ld
$1 = <invalid float value>
(lldb) frame variable ld
(long double) ld = <extracting data from value failed>
```
GCC represents/uses DW_OP_implicit_value in these sort of situations.
Based on the discussion with Jakub Jelinek regarding GCC's motivation
for using this, I concluded that DW_OP_implicit_value is most appropriate
in this case.
Link: https://gcc.gnu.org/pipermail/gcc/2020-July/233057.html
GDB seems happy after this patch:(LLDB doesn't have support
for DW_OP_implicit_value)
```
(gdb) p ld
p ld
$1 = 3.14000000000000012434
```
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83560
Theory was that we should never reach a non-type unit (eg: type in an
anonymous namespace) when we're already in the invalid "encountered an
address-use, so stop emitting types for now, until we throw out the
whole type tree to restart emitting in non-type unit" state. But that's
not the case (prior commit cleaned up one reason this wasn't exposed
sooner - but also makes it easier to test/demonstrate this issue)
This reads more like what you'd expect the DWARF to look like (from the
lexical order of C++ - template parameters come before members, etc),
and also happens to make it easier to tickle (& thus test) a bug related
to type units and Split DWARF I'm about to fix.
SUMMARY:
1. in the patch , remove setting storageclass in function .getXCOFFSection and construct function of class MCSectionXCOFF
there are
XCOFF::StorageMappingClass MappingClass;
XCOFF::SymbolType Type;
XCOFF::StorageClass StorageClass;
in the MCSectionXCOFF class,
these attribute only used in the XCOFFObjectWriter, (asm path do not need the StorageClass)
we need get the value of StorageClass, Type,MappingClass before we invoke the getXCOFFSection every time.
actually , we can get the StorageClass of the MCSectionXCOFF from it's delegated symbol.
2. we also change the oprand of branch instruction from symbol name to qualify symbol name.
for example change
bl .foo
extern .foo
to
bl .foo[PR]
extern .foo[PR]
3. and if there is reference indirect call a function bar.
we also add
extern .bar[PR]
Reviewers: Jason liu, Xiangling Liao
Differential Revision: https://reviews.llvm.org/D84765
Allow the GNU .debug_macro extension to be emitted for DWARF versions
earlier than 5. The extension is basically what became DWARF 5's format,
except that a DW_AT_GNU_macros attribute is emitted, and some entries
like the strx entries are missing. In this patch I emit GNU's indirect
entries, which are the same as DWARF 5's strp entries.
This patch adds the extension behind a hidden LLVM flag,
-use-gnu-debug-macro. I would later want to enable it by default when
tuning for GDB and targeting DWARF versions earlier than 5.
The size of a Clang 8.0 binary built with RelWithDebInfo and the flags
"-gdwarf-4 -fdebug-macro" reduces from 1533 MB to 1349 MB with
.debug_macro (compared to 1296 MB without -fdebug-macro).
Reviewed By: SouraVX, dblaikie
Differential Revision: https://reviews.llvm.org/D82975
Broken out from a review comment on D82975. This is an NFC expect for
that the Macinfo macro string is now emitted using a single emitBytes()
invocation, so it can be done using a single string directive.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D83557
Move the Dwarf version checks that determine if the .debug_macro section
should be emitted, into a DwarfDebug member. This is a preparatory
refactoring for allowing the GNU .debug_macro extension, which is a
precursor to the DWARF 5 format, to be emitted by LLVM for earlier DWARF
versions.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D82971
This patch adds the missing information to the LF_BUILDINFO record, which allows for rebuilding a .CPP without any external dependency but the .OBJ itself (other than the compiler).
Some external tools that we are using (Recode, Live++) are extracting the information to reproduce a build without any knowledge of the build system. The LF_BUILDINFO stores a full path to the compiler, the PWD (CWD at program startup), a relative or absolute path to the TU, and the full CC1 command line. The command line needs to be freestanding (not depend on any environment variables). In the same way, MSVC doesn't store the provided command-line, but an expanded version (somehow their equivalent of CC1) which is also freestanding.
For more information see PR36198 and D43002.
Differential Revision: https://reviews.llvm.org/D80833
On the frontend side, this patch recovers AIX static init implementation to
use the linkage type and function names Clang chooses for sinit related function.
On the backend side, this patch sets correct linkage and function names on aliases
created for sinit/sterm functions.
Differential Revision: https://reviews.llvm.org/D84534
This also fixes the condition in the assertion in
DwarfCompileUnit::getLabelBegin() because it checked something unrelated
to the returned value.
Differential Revision: https://reviews.llvm.org/D85437
This removes members of the DIEUnit class which were used only in unit
tests. Note also that child classes shadowed some of these methods,
namely, getDwarfVersion() was overridden in DwartfUnit and getLength()
was overridden in DwarfCompileUnit.
Differential Revision: https://reviews.llvm.org/D85436
This patch changes the functionality of AsmPrinter to name the basic block end labels as LBB_END${i}_${j}, with ${i} being the identifier for the function and ${j} being the identifier for the basic block. The new naming scheme is consistent with how basic block labels are named (.LBB${i}_{j}), and how function end symbol are named (.Lfunc_end${i}) and helps to write stronger tests for the upcoming patch for BB-Info section (as proposed in https://lists.llvm.org/pipermail/llvm-dev/2020-July/143512.html). The end label is used with basicblock-labels (BB-Info section in future) and basicblock-sections to compute the size of basic blocks and basic block sections, respectively. For BB sections, the section containing the entry basic block will not have a BB end label since it already gets the function end-label.
This label is cached for every basic block (CachedEndMCSymbol) like the label for the basic block (CachedMCSymbol).
Differential Revision: https://reviews.llvm.org/D83885
The CFA is calculated as (SP/FP + offset), but when there are
SVE objects on the stack the SP offset is partly scalable and
should instead be expressed as the DWARF expression:
SP + offset + scalable_offset * VG
where VG is the Vector Granule register, containing the
number of 64bits 'granules' in a scalable vector.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84043
The patch restricts DIEDelta::SizeOf() to accept only DWARF forms that
are actually used in the LLVM codebase. This should make the use of the
class more explicit and help to avoid issues similar to fixed in D83958
and D84094.
Differential Revision: https://reviews.llvm.org/D84095
DIELabel can emit only 32- or 64-bit values, while it was created in
some places with DW_FORM_udata, which implies emitting uleb128.
Nevertheless, these places also expected to emit U32 or U64, but just
used a misleading DWARF form. The patch updates those places to use more
appropriate DWARF forms and restricts DIELabel::SizeOf() to accept only
forms that are actually used in the LLVM codebase.
Differential Revision: https://reviews.llvm.org/D84094
DIELocList is used with a limited number of DWARF forms, see the only
place where it is instantiated, DwarfCompileUnit::addLocationList().
The patch marks the unexpected execution path in DIELocList::SizeOf()
as unreachable, to reduce ambiguity.
Differential Revision: https://reviews.llvm.org/D84092
Emit DWARF 5 call-site symbols even though DWARF 4 is set,
only in the case of LLDB tuning.
This patch addresses PR46643.
Differential Revision: https://reviews.llvm.org/D83463