I believe the original code is valid, but on Windows it failed with an
assertion error saying "Expression: vector iterator is not decrementable."
Don't use rbegin and rend to workaround that error.
llvm-svn: 226706
We used to manage the state whether we are in a group or not
using a counter. The counter is incremented by one if we jump from
end-group to start-group, and decremented by one if we don't.
The counter was assumed to be either zero or one, but obviously it
could be negative (if there's a group which is not repeated at all).
This is a fix for that issue.
llvm-svn: 226632
LLD parses archive file index table only at first. When it finds a symbol
it is looking for is defined in a member file in an archive file, it actually
reads the member from the archive file. That's done in the core linker.
That's a single-thread process since the core linker is single threaded.
If your command line contains a few object files and a lot of archive files
(which is quite often the case), LLD hardly utilizes hardware parallelism.
This patch improves parallelism by speculatively instantiating archive
file members. At the beginning of the core linking, we first create a map
containing all symbols defined in all members, and each time we find a
new undefined symbol, we instantiate a member file containing the
symbol (if such file exists). File instantiation is side effect free, so this
should not affect correctness.
This is a quick benchmark result. Time to link self-link LLD executable:
Linux 9.78s -> 8.50s (0.86x)
Windows 6.18s -> 4.51s (0.73x)
http://reviews.llvm.org/D7015
llvm-svn: 226336
This patch makes File::parse() multi-thread safe. If one thread is running
File::parse(), other threads will block if they try to call the same method.
File::parse() is idempotent, so you can safely call multiple times.
With this change, we don't have to wait for all worker threads to finish
in Driver::link(). Previously, Driver::link() calls TaskGroup::sync() to
wait for all threads running File::parse(). This was not ideal because
we couldn't start the resolver until we parse all files.
This patch increase parallelism by making Driver::link() to not wait for
worker threads. The resolver calls parse() to make sure that the file
being read has been parsed, and then uses the file. In this approach,
the resolver can run with the parser threads in parallel.
http://reviews.llvm.org/D6994
llvm-svn: 226281
InputElement was named that because it's an element of an InputGraph.
It's losing the origin because the InputGraph is now being removed.
InputElement's subclass is FileNode, that naming inconsistency needed
to be fixed.
llvm-svn: 226147
These changes depended on r225674 and had been rolled back in r225859.
Because r225674 has been re-submitted, it's safe to re-submit them.
llvm-svn: 226132
r225764 broke a basic functionality on Mac OS. This change reverts
r225764, r225766, r225767, r225769, r225814, r225816, r225829, and r225832.
llvm-svn: 225859
getNextFile used to have a complex logic to determine which file
should be processed by the Resolver on next iteration.
Now, it is just a sequential accessor to the internal array and
provides no sensible feature.
This patch also removes InputGraph::getGroupSize and InputGraph::
skipGroup to simplify the code.
llvm-svn: 225832
These member functions returns either no_more_files error or a File object.
We could simply return a nullptr instead of a no_more_files.
This function will be removed soon as a part of InputGraph cleanup.
I had to do that step by step.
llvm-svn: 224208
This reverts commit r223330 because it broke Darwin and ELF
linkers in a way that we couldn't have caught with the existing
test cases.
llvm-svn: 223373
The aim of this patch is to reduce the excessive abstraction from
the InputGraph. We found that even a simple thing, such as sorting
input files (Mach-O) or adding a new file to the input file list
(PE/COFF), is nearly impossible with the InputGraph abstraction,
because it hides too much information behind it. As a result,
we invented complex interactions between components (e.g.
notifyProgress() mechanism) and tricky code to work around that
limitation. There were many occasions that we needed to write
awkward code.
This patch is a first step to make it cleaner. As a first step,
this removes Group class from the InputGraph. The grouping feature
is now directly handled by the Resolver. notifyProgress is removed
since we no longer need that. I could have cleaned it up even more,
but in order to keep the patch minimum, I focused on Group.
SimpleFileNode class, a container of File objects, is now limited
to have only one File. We shold have done this earlier.
We used to allow putting multiple File objects to FileNode.
Although SimpleFileNode usually has only one file, the Driver class
actually used that capability. I modified the Driver class a bit,
so that one FileNode is created for each input File.
We should now probably remove SimpleFileNode and directly store
File objects to the InputGraph in some way, because a container
that can contain only one object is useless. This is a TODO.
Mach-O input files are now sorted before they are passe to the
Resolver. DarwinInputGraph class is no longer needed, so removed.
PECOFF still has hacky code to add a new file to the input file list.
This will be cleaned up in another patch.
llvm-svn: 223330
The job of the CompactUnwind pass is to turn __compact_unwind data (and
__eh_frame) into the compressed final form in __unwind_info. After it's done,
the original atoms are no longer relevant and should be deleted (they cause
problems during actual execution, quite apart from the fact that they're not
needed).
llvm-svn: 221301
The darwin linker has the -demangle option which directs it to demangle C++
(and soon Swift) mangled symbol names. Long term we need some Diagnostics object
for formatting errors and warnings. But for now we have the Core linker just
writing messages to llvm::errs(). So, to enable demangling, I changed the
Resolver to call a LinkingContext method on the symbol name.
To make this more interesting, the demangling code is done via __cxa_demangle()
which is part of the C++ ABI, which is only supported on some platforms, so I
had to conditionalize the code with the config generated HAVE_CXXABI_H.
llvm-svn: 218718
COFF supports a feature similar to ELF's section groups. This
patch implements it.
In ELF, section groups are identified by their names, and they are
treated somewhat differently from regular symbols. In COFF, the
feature is realized in a more straightforward way. A section can
have an annotation saying "if Nth section is linked, link this
section too."
I added a new reference type, kindAssociate. If a target atom is
coalesced away, the referring atom is removed by Resolver, so that
they are treated as a group.
Differential Revision: http://reviews.llvm.org/D4028
llvm-svn: 211106
isCoalescedAway(x) is faster than replacement(x) != x as the former
does not follow the replacement atom chain. Also it's easier to use.
llvm-svn: 210242
Previously section groups are doubly linked to their children.
That is, an atom representing a group has group-child references
to its group contents, and content atoms also have group-parent
references to the group atom. That relationship was invariant;
if X has a group-child edge to Y, Y must have a group-parent
edge to X.
However we were not using group-parent references at all. The
resolver only needs group-child edges.
This patch simplifies the section group by removing the unused
reverse edge. No functionality change intended.
Differential Revision: http://reviews.llvm.org/D3945
llvm-svn: 210066
Layout-before edges are no longer used for layout, but they are
still there for dead-stripping. If we would just remove them
from code, LLD would wrongly remove live atoms that were
referenced by layout-befores.
This patch fixes the issue. Before dead-stripping, it scans all
atoms to construct a reverse map for layout-after edges. Dead-
stripping pass uses the map to traverse the graph.
Differential Revision: http://reviews.llvm.org/D3986
llvm-svn: 210057
Reference::target() never returns a nullptr, so NULL check
is not needed and is more harmful than doing nothing.
No functionality change.
llvm-svn: 210008
In r205566, I made a change to Resolver so that Resolver revisit
only archive files in --start-group and --end-group pair. That's
not correct, as it also has to revisit DSO files.
This patch is to fix the issue.
Added a test to demonstrate the fix. I confirmed that it succeeded
before r205566, failed after r205566, and is ok with this patch.
Differential Revision: http://reviews.llvm.org/D3734
llvm-svn: 208797
Seems getSomething() is more common naming scheme than just a noun
to get something, so renaming these members.
Differential Revision: http://llvm-reviews.chandlerc.com/D3285
llvm-svn: 205589
Atoms with deadStripNever attribute has already been added to the
dead strip root set at end of Resolver::doDefinedAtom, so no need
to check it for each atom again.
Differential Revision: http://llvm-reviews.chandlerc.com/D3282
llvm-svn: 205575
ELFLinkingContext has a method addUndefinedAtomsFromSharedLibrary().
The method is being used to skip a shared library within --start-group
and --end-group if it's not the first iteration of the group.
We have the same, incomplete mechanism to skip a shared library within
a group too. That's implemented in ELFFileNode. It's intended to not
return a shared library on the second or further iterations in the
first place. This mechanism is preferred over
addUndefinedAtomsFromSharedLibrary because the policy is implemented
in Input Graph -- that's what Input Graph is for.
This patch removes the dupluicate feature and fixes ELFFileNode.
Differential Revision: http://llvm-reviews.chandlerc.com/D3280
llvm-svn: 205566
"x.empty()" is more idiomatic than "x.size() == 0". This patch is to
add such method and use it in LLD.
Differential Revision: http://llvm-reviews.chandlerc.com/D3279
llvm-svn: 205558
Resolver is sending too much information to Input Graph than Input
Graph actually needs. In order to collect the detailed information,
which wouldn't be consumed by anyone, we have a good amount of code
in Resolver, Input Graph and Input Elements. This patch is to
simplify it. No functionality change.
Specifically, this patch replaces ResolverState enum with a boolean
value. The enum defines many bits to notify the progress about
linking to Input Graph using bit masks, however, what Input Graph
actually does is to compare a given value with 0. The details of
the bit mask is simply being ignored, so the efforts to collect
such data is wasted.
This patch also changes the name of the notification interface from
setResolverState to notifyProgress, to make it sounds more like
message passing style. It's not a setter but something to notify of
an update, so the new name should be more appropriate than before.
Differential Revision: http://llvm-reviews.chandlerc.com/D3267
llvm-svn: 205463