Summary:
Add an overload to sys::fs::setLastModificationAndAccessTime that allows setting last access and modification times separately. This will allow tools to use this API when they want to preserve both the access and modification times from an input file, which may be different.
Also note that both the POSIX (futimens/futimes) and Windows (SetFileTime) APIs take the two timestamps in the order of (1) access (2) modification time, so this renames the method to "setLastAccessAndModificationTime" to make it clear which timestamp is which.
For existing callers, the 1-arg overload just sets both timestamps to the same thing.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50521
llvm-svn: 339628
Specifically, AttributedType now tracks a regular attr::Kind rather than
having its own parallel Kind enumeration, and AttributedTypeLoc now
holds an Attr* instead of holding an ad-hoc collection of Attr fields.
Differential Revision: https://reviews.llvm.org/D50526
llvm-svn: 339623
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.
While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.
The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.
While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.
Fixes PR38537.
llvm-svn: 339622
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
The transform itself ended up being rather horrible, even though i omitted some cases.
Surely there is some infrastructure that can help clean this up that i missed?
https://rise4fun.com/Alive/3Ou
The initial commit (rL339610)
was reverted, since the first assert was being triggered.
The @positive_with_extra_and test now has coverage for that case.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339621
Even though this code is below a function called optimizeFloatingPointLibCall(),
we apparently can't guarantee that we're dealing with FPMathOperators, so bail
out immediately if that's not true.
llvm-svn: 339618
Summary:
Export __sanitizer_malloc, etc as aliases to malloc, etc.
This way users can wrap sanitizer malloc, even in fully static binaries.
Both jemalloc and tcmalloc provide similar aliases (je_* and tc_*).
Reviewers: vitalybuka, kcc
Subscribers: llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D50570
llvm-svn: 339614
At least one buildbot was able to actually trigger that assert
on the top of the function. Will investigate.
This reverts commit r339610.
llvm-svn: 339612
Summary:
We can optimize and refactor some of the classes in RangeMap.h, but first
we should have some tests for all the data structures in there. This adds a first
batch of tests for the Range class itself.
There are some unexpected results happening when mixing invalid and valid ranges, so
I added some FIXME's for that in the tests.
Reviewers: vsk
Reviewed By: vsk
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50620
llvm-svn: 339611
Summary:
This comes with `Implicit Conversion Sanitizer - integer sign change` (D50250):
```
signed char test(unsigned int x) { return x; }
```
`clang++ -fsanitize=implicit-conversion -S -emit-llvm -o - /tmp/test.cpp -O3`
* Old: {F6904292}
* With this patch: {F6904294}
General pattern:
X & Y
Where `Y` is checking that all the high bits (covered by a mask `4294967168`)
are uniform, i.e. `%arg & 4294967168` can be either `4294967168` or `0`
Pattern can be one of:
%t = add i32 %arg, 128
%r = icmp ult i32 %t, 256
Or
%t0 = shl i32 %arg, 24
%t1 = ashr i32 %t0, 24
%r = icmp eq i32 %t1, %arg
Or
%t0 = trunc i32 %arg to i8
%t1 = sext i8 %t0 to i32
%r = icmp eq i32 %t1, %arg
This pattern is a signed truncation check.
And `X` is checking that some bit in that same mask is zero.
I.e. can be one of:
%r = icmp sgt i32 %arg, -1
Or
%t = and i32 %arg, 2147483648
%r = icmp eq i32 %t, 0
Since we are checking that all the bits in that mask are the same,
and a particular bit is zero, what we are really checking is that all the
masked bits are zero.
So this should be transformed to:
%r = icmp ult i32 %arg, 128
https://rise4fun.com/Alive/3Ou
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: RKSimon, erichkeane, vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D50465
llvm-svn: 339610
Summary:
Don't crash when /proc/self/maps is inaccessible from main thread.
It's not a big deal, really.
Reviewers: vitalybuka, kcc
Subscribers: kubamracek, llvm-commits
Differential Revision: https://reviews.llvm.org/D50574
llvm-svn: 339607
Summary:
Provide __hwasan_shadow_init that can be used to initialize shadow w/o touching libc.
It can be used to bootstrap an unusual case of fully-static executable with
hwasan-instrumented libc, which needs to run hwasan code before it is ready to serve
user calls like madvise().
Reviewers: vitalybuka, kcc
Subscribers: kubamracek, llvm-commits
Differential Revision: https://reviews.llvm.org/D50581
llvm-svn: 339606
Added a test case to reduction showing where it's illegal to identify
vectorize a loop.
Resetting the reduction var during loop iterations disallows us from
widening the dependency cycle to VF, thereby making it illegal to
vectorize the loop.
llvm-svn: 339605
This is a very partial fix for the reported problem. I suspect
we do not get this fold in most motivating cases because most of
the time, the libcall would have been replaced by an intrinsic,
and that optimization is handled elsewhere...but maybe it should
be handled here?
llvm-svn: 339604
Fix SelectionDAG::computeKnownBits asserting when handling EXTRACT_SUBVECTOR
when zero extending the demanded elements mask if it is already as long as the
source vector.
Differential Revision: https://reviews.llvm.org/D49574
llvm-svn: 339600
Before this patch, FieldChainInfo used a spaghetti: it took care of way too many cases,
even though it was always meant as a lightweight wrapper around
ImmutableList<const FieldRegion *>.
This problem is solved by introducing a lightweight polymorphic wrapper around const
FieldRegion *, FieldNode. It is an interface that abstracts away special cases like
pointers/references, objects that need to be casted to another type for a proper note
messages.
Changes to FieldChainInfo:
* Now wraps ImmutableList<const FieldNode &>.
* Any pointer/reference related fields and methods were removed
* Got a new add method. This replaces it's former constructors as a way to create a
new FieldChainInfo objects with a new element.
Changes to FindUninitializedField:
* In order not to deal with dynamic memory management, when an uninitialized field is
found, the note message for it is constructed and is stored instead of a
FieldChainInfo object. (see doc around addFieldToUninits).
Some of the test files are changed too, from now on uninitialized pointees of references
always print "uninitialized pointee" instead of "uninitialized field" (which should've
really been like this from the beginning).
I also updated every comment according to these changes.
Differential Revision: https://reviews.llvm.org/D50506
llvm-svn: 339599
Multiversioned member functions inside of a template type were
not properly being emitted. The solution to this is to simply
ensure that their bodies are correctly evaluated/assigned during
template instantiation.
llvm-svn: 339597
In this patch, the following classes and functions have been moved to a header file:
FieldChainInfo
FindUninitializedFields
isPrimitiveType
This also meant that they moved from anonymous namespace to clang::ento.
Code related to pointer chasing now relies in its own file.
There's absolutely no functional change in this patch -- its literally just copy pasting.
Differential Revision: https://reviews.llvm.org/D50504
llvm-svn: 339595
Summary:
This patch introduces error handling to propagate the errors from llvm-mca library classes (or what will become library classes) up to the driver. This patch also introduces an enum to make clearer the intention of the return value for Stage::execute.
This supports PR38101.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: llvm-commits, tschuett, gbedwell
Differential Revision: https://reviews.llvm.org/D50561
llvm-svn: 339594
Summary:
Fixes r339581 ("[SEMA] add more -Wfloat-conversion to
compound assigment analysis").
This test case was caught in postsubmit testing.
Reviewers: aaron.ballman, gkistanova
Reviewed By: aaron.ballman
Subscribers: cfe-commits, srhines
Differential Revision: https://reviews.llvm.org/D50647
llvm-svn: 339593
This patch is the first part of a series of patches to refactor UninitializedObjectChecker. The goal of this effort is to
Separate pointer chasing from the rest of the checker,
Increase readability and reliability,
Don't impact performance (too bad).
In this one, ImmutableList's factory is moved to FindUninitializedFields.
Differential Revision: https://reviews.llvm.org/D50503
llvm-svn: 339591
This change fixes an incorrect behavior of the omp_control_tool function when
called from Fortran applications. A tool callback function for this event is
supposed to get NULL for the third argument according to the specification, but
the current implementation just passes a garbage value. A possible fix is to use
the OPTIONAL attribute for the third argument.
Patch by Hansang Bae
Differential Revision: https://reviews.llvm.org/D50565
llvm-svn: 339585
Summary:
Removing FastDemangle will greatly reduce maintenance efforts. This patch replaces the last point of use in LLDB. Semantics should be kept intact.
Once this is agreed upon, we can:
* Remove the FastDemangle sources
* Add more features e.g. substitutions in template parameters, considering all variations, etc.
Depends on LLVM patch https://reviews.llvm.org/D50586
Reviewers: erik.pilkington, friss, jingham, JDevlieghere
Subscribers: kristof.beyls, chrib, lldb-commits
Differential Revision: https://reviews.llvm.org/D50587
llvm-svn: 339583
The current static_assert only checks that ObjCObjectTypeBitfields
fits into an unsigned. However it turns out that FunctionTypeBitfields
do not currently fits into an unsigned. Therefore the anonymous
union containing the bit-fields always use 8 bytes instead of 4.
This patch removes the lone misguided static_assert and systematically
checks the size of each bit-field.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D50630
llvm-svn: 339582
This function calls a callback whenever a <type> is parsed.
This is necessary to implement FindAlternateFunctionManglings in LLDB, which
uses a similar hack in FastDemangle. Once that function has been updated to use
this version, FastDemangle can finally be removed.
Differential revision: https://reviews.llvm.org/D50586
llvm-svn: 339580