Introduce DIPrinter which takes care of rendering DILineInfo and
friends. This allows LLVMSymbolizer class to return a structured data
instead of plain std::strings.
llvm-svn: 251989
Summary:
We now collect all types of dependences including lexically forward
deps not just "interesting" ones.
Reviewers: hfinkel
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13256
llvm-svn: 251985
Make printDILineInfo and friends responsible for just rendering the
contents of the structures, demangling should actually be performed
earlier, when we have the information about the originating
SymbolizableModule at hand.
llvm-svn: 251981
XOP has the VPCMOV instruction that performs the common vector bit select operation OR( AND( SRC1, SRC3 ), AND( SRC2, ~SRC3 ) )
This patch adds tablegen pattern matching for this instruction.
Differential Revision: http://reviews.llvm.org/D8841
llvm-svn: 251975
Summary:
When the dependence distance in zero then we have a loop-independent
dependence from the earlier to the later access.
No current client of LAA uses forward dependences so other than
potentially hitting the MaxDependences threshold earlier, this change
shouldn't affect anything right now.
This and the previous patch were tested together for compile-time
regression. None found in LNT/SPEC.
Reviewers: hfinkel
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13255
llvm-svn: 251973
Summary:
Before this change, we didn't use to collect forward dependences since
none of the current clients (LV, LDist) required them.
The motivation to also collect forward dependences is a new pass
LoopLoadElimination (LLE) which discovers store-to-load forwarding
opportunities across the loop's backedge. The pass uses both lexically
forward or backward loop-carried dependences to detect these
opportunities.
The new pass also analyzes loop-independent (forward) dependences since
they can conflict with the loop-carried dependences in terms of how the
data flows through memory.
The newly added test only covers loop-carried forward dependences
because loop-independent ones are currently categorized as NoDep. The
next patch will fix this.
The two patches were tested together for compile-time regression. None
found in LNT/SPEC.
Note that with this change LAA provides all dependences rather than just
"interesting" ones. A subsequent NFC patch will remove the now trivial
isInterestingDependence and rename the APIs.
Reviewers: hfinkel
Subscribers: jmolloy, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13254
llvm-svn: 251972
This reverts commit r251926. I believe this is causing an LTO
bootstrapping bot failure
(http://lab.llvm.org:8080/green/job/llvm-stage2-cmake-RgLTO_build/3669/).
Haven't been able to repro it yet, but after looking at the metadata I
am pretty sure I know what is going on.
llvm-svn: 251965
Summary:
Since now Scalar Evolution can create non-add rec expressions for PHI
nodes, it can also create SCEVConstant expressions. This will confuse
replaceCongruentPHIs, which previously relied on the fact that SCEV
could not produce constants in this case.
We will now replace the node with a constant in these cases - or avoid
processing the Phi in case of a type mismatch.
Reviewers: sanjoy
Subscribers: llvm-commits, majnemer
Differential Revision: http://reviews.llvm.org/D14230
llvm-svn: 251938
Bypassing LLVM for this has a number of benefits:
1) Laziness support becomes asm-syntax agnostic (previously lazy jitting didn't
work on Windows as the resolver block was in Darwin asm).
2) For cross-process JITs, it allows resolver blocks and trampolines to be
emitted directly in the target process, reducing cross process traffic.
3) It should be marginally faster.
llvm-svn: 251933
Summary:
Currently, named metadata is linked before the LazilyLinkGlobalValues
list is walked and materialized/linked. As a result, references
from DISubprogram and DIGlobalVariable metadata to yet unmaterialized
functions and variables cause them to be added to the lazy linking
list and their definitions are materialized and linked.
This makes the llvm-link -only-needed option not have the intended
effect when debug information is present, as the otherwise unneeded
functions/variables are still linked in.
Additionally, for ThinLTO I have implemented a mechanism to only link
in debug metadata needed by imported functions. Moving named metadata
linking after lazy GV linking will facilitate applying this mechanism
to the LTO and "llvm-link -only-needed" cases as well.
Reviewers: dexonsmith, tra, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14195
llvm-svn: 251926
No test, since it would depend on what the compiler can optimize/reuse.
My next commit made this bug visible on Linux Release compiles with some
versions of gcc.
llvm-svn: 251909
When push instructions are being used to pass function arguments on
the stack, and either EH or debugging are enabled, we need to generate
.cfi_adjust_cfa_offset directives appropriately. For (synch) EH, it is
enough for the CFA offset to be correct at every call site, while
for debugging we want to be correct after every push.
Darwin does not support this well, so don't use pushes whenever it
would be required.
Differential Revision: http://reviews.llvm.org/D13767
llvm-svn: 251904
Commit 251839 triggers miscompiles on some bots:
http://lab.llvm.org:8011/builders/perf-x86_64-penryn-O3-polly-fast/builds/13723
(The commit is listed in 13722, but due to an existing failure introduced in
13721 and reverted in 13723 the failure is only visible in 13723)
To verify r251839 is indeed the only change that triggered the buildbot failures
and to ensure the buildbots remain green while investigating I temporarily
revert this commit. At the current state it is unclear if this commit introduced
some miscompile or if it only exposed code to Polly that is subsequently
miscompiled by Polly.
llvm-svn: 251901
ScheduleDAGInstrs doesn't behave differently before or after register
allocation. It was only used in a method of MachineSchedulerBase which
behaved differently in MachineScheduler/PostMachineScheduler. Change
this to let MachineScheduler/PostMachineScheduler just pass in a
parameter to that function.
The order of the LiveIntervals* and bool RemoveKillFlags paramters have
been switched to make out-of-tree code fail instead of unintentionally
passing a value intended for the IsPostRA flag to the (previously
following and default initialized) RemoveKillFlags.
Differential Revision: http://reviews.llvm.org/D14245
llvm-svn: 251883
This was causing a variety of test failures when v2i64
is added as a legal type.
SIFixSGPRCopies should correctly handle the case of vector inputs
to a scalar reg_sequence, so this isn't necessary anymore. This
was hiding some deficiencies in how reg_sequence is handled later,
but this shouldn't be a problem anymore since the register class
copy of a reg_sequence is now done before the reg_sequence.
llvm-svn: 251860
I've found myself pointlessly debugging problems from running
graphics tests with an HSA triple a few times, so stop this from
happening again.
llvm-svn: 251858
This is a redo of r251849 except the tests have been split into arch-specific folders
to hopefully make the bots happy.
This is a follow-up from the discussion in D12965. The block-at-a-time limitation of
SelectionDAG also came up in D13297.
Without the InstCombine change from D12965, I don't expect this patch to make any
difference in the real world because InstCombine does not shrink cases like this in
visitSwitchInst(). But we need to have this CGP safety harness in place before
proceeding with any shrinkage in D12965, so we won't generate extra extends for compares.
I've opted for IR regression tests in the patch because that seems like a clearer way to
test the transform, but PowerPC CodeGen for an i16 widening test is shown below. x86
will need more work to solve: https://llvm.org/bugs/show_bug.cgi?id=22473
Before:
BB#0:
mr 4, 3
extsh. 3, 4
ble 0, .LBB0_5
BB#1:
cmpwi 3, 99
bgt 0, .LBB0_9
BB#2:
rlwinm 4, 4, 0, 16, 31 <--- 32-bit mask/extend
li 3, 0
cmplwi 4, 1
beqlr 0
BB#3:
cmplwi 4, 10
bne 0, .LBB0_12
BB#4:
li 3, 1
blr
.LBB0_5:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 65436
beq 0, .LBB0_13
BB#6:
cmplwi 3, 65526
beq 0, .LBB0_15
BB#7:
cmplwi 3, 65535
bne 0, .LBB0_12
BB#8:
li 3, 4
blr
.LBB0_9:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 100
beq 0, .LBB0_14
...
After:
BB#0:
rlwinm 4, 3, 0, 16, 31 <--- mask/extend to 32-bit and then use that for comparisons
cmpwi 4, 999
ble 0, .LBB0_5
BB#1:
lis 3, 0
ori 3, 3, 65525
cmpw 4, 3
bgt 0, .LBB0_9
BB#2:
cmplwi 4, 1000
beq 0, .LBB0_14
BB#3:
cmplwi 4, 65436
bne 0, .LBB0_13
BB#4:
li 3, 6
blr
.LBB0_5:
li 3, 0
cmplwi 4, 1
beqlr 0
BB#6:
cmplwi 4, 10
beq 0, .LBB0_12
BB#7:
cmplwi 4, 100
bne 0, .LBB0_13
BB#8:
li 3, 2
blr
.LBB0_9:
cmplwi 4, 65526
beq 0, .LBB0_15
BB#10:
cmplwi 4, 65535
bne 0, .LBB0_13
...
Differential Revision: http://reviews.llvm.org/D13532
llvm-svn: 251857
To be able to maximize the bandwidth during vectorization, this patch provides a new flag vectorizer-maximize-bandwidth. When it is turned on, the vectorizer will determine the vectorization factor (VF) using the smallest instead of widest type in the loop. To avoid increasing register pressure too much, estimates of the register usage for different VFs are calculated so that we only choose a VF when its register usage doesn't exceed the number of available registers.
This is the second attempt to submit this patch. The first attempt got a test failure on ARM. This patch is updated to try to fix the failure (more specifically, by handling the case when VF=1).
Differential revision: http://reviews.llvm.org/D8943
llvm-svn: 251850
This is a follow-up from the discussion in D12965. The block-at-a-time limitation of
SelectionDAG also came up in D13297.
Without the InstCombine change from D12965, I don't expect this patch to make any
difference in the real world because InstCombine does not shrink cases like this in
visitSwitchInst(). But we need to have this CGP safety harness in place before
proceeding with any shrinkage in D12965, so we won't generate extra extends for compares.
I've opted for IR regression tests in the patch because that seems like a clearer way to
test the transform, but PowerPC CodeGen for an i16 widening test is shown below. x86
will need more work to solve: https://llvm.org/bugs/show_bug.cgi?id=22473
Before:
BB#0:
mr 4, 3
extsh. 3, 4
ble 0, .LBB0_5
BB#1:
cmpwi 3, 99
bgt 0, .LBB0_9
BB#2:
rlwinm 4, 4, 0, 16, 31 <--- 32-bit mask/extend
li 3, 0
cmplwi 4, 1
beqlr 0
BB#3:
cmplwi 4, 10
bne 0, .LBB0_12
BB#4:
li 3, 1
blr
.LBB0_5:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 65436
beq 0, .LBB0_13
BB#6:
cmplwi 3, 65526
beq 0, .LBB0_15
BB#7:
cmplwi 3, 65535
bne 0, .LBB0_12
BB#8:
li 3, 4
blr
.LBB0_9:
rlwinm 3, 4, 0, 16, 31 <--- 32-bit mask/extend
cmplwi 3, 100
beq 0, .LBB0_14
...
After:
BB#0:
rlwinm 4, 3, 0, 16, 31 <--- mask/extend to 32-bit and then use that for comparisons
cmpwi 4, 999
ble 0, .LBB0_5
BB#1:
lis 3, 0
ori 3, 3, 65525
cmpw 4, 3
bgt 0, .LBB0_9
BB#2:
cmplwi 4, 1000
beq 0, .LBB0_14
BB#3:
cmplwi 4, 65436
bne 0, .LBB0_13
BB#4:
li 3, 6
blr
.LBB0_5:
li 3, 0
cmplwi 4, 1
beqlr 0
BB#6:
cmplwi 4, 10
beq 0, .LBB0_12
BB#7:
cmplwi 4, 100
bne 0, .LBB0_13
BB#8:
li 3, 2
blr
.LBB0_9:
cmplwi 4, 65526
beq 0, .LBB0_15
BB#10:
cmplwi 4, 65535
bne 0, .LBB0_13
...
Differential Revision: http://reviews.llvm.org/D13532
llvm-svn: 251849
This reverts commit r251837, due to a number of bot failures of the form:
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to
'llvm::object::FunctionIndexObjectFile::create(llvm::MemoryBufferRef,
llvm::LLVMContext&, llvm::Module const*, bool)'
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to 'llvm::object::FunctionIndexObjectFile::takeIndex()'
I'm not sure why these are happening - I added Object to the requred
libraries in tools/llvm-link/LLVMBuild.txt and the LLVM_LINK_COMPONENTS
in tools/llvm-link/CMakeLists.txt. Confirmed for my build that these
symbols come out of libLLVMObject.a. What am I missing?
llvm-svn: 251841
Summary:
This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13974
llvm-svn: 251839
Summary:
Support for necessary linkage changes and symbol renaming during
ThinLTO function importing.
Also includes llvm-link support for manually importing functions
and associated llvm-link based tests.
Note that this does not include support for intelligently importing
metadata, which is currently imported duplicate times. That support will
be in the follow-on patch, and currently is ignored by the tests.
Reviewers: dexonsmith, joker.eph, davidxl
Subscribers: tobiasvk, tejohnson, llvm-commits
Differential Revision: http://reviews.llvm.org/D13515
llvm-svn: 251837
In the current BB placement algorithm, a loop chain always contains all loop blocks. This has a drawback that cold blocks in the loop may be inserted on a hot function path, hence increasing branch cost and also reducing icache locality.
Consider a simple example shown below:
A
|
B⇆C
|
D
When B->C is quite cold, the best BB-layout should be A,B,D,C. But the current implementation produces A,C,B,D.
This patch filters those cold blocks off from the loop chain by comparing the ratio:
LoopBBFreq / LoopFreq
to 20%: if it is less than 20%, we don't include this BB to the loop chain. Here LoopFreq is the frequency of the loop when we reduce the loop into a single node. In general we have more cold blocks when the loop has few iterations. And vice versa.
Differential revision: http://reviews.llvm.org/D11662
llvm-svn: 251833
1) PR25154. This is basically a repeat of PR18102, which was fixed in
r200201, and broken again by r234430. The latter changed which of the
store nodes was merged into from the first to the last. Thus, we now
also need to prefer merging a later store at a given address into the
target node, instead of an earlier one.
2) While investigating that, I also realized I'd introduced a bug in
r236850. There, I removed a check for alignment -- not realizing that
nothing except the alignment check was ensuring that none of the stores
were overlapping! This is a really bogus way to ensure there's no
aliased stores.
A better solution to both of these issues is likely to always use the
code added in the 'if (UseAA)' branches which rearrange the chain based
on a more principled analysis. I'll look into whether that can be used
always, but in the interest of getting things back to working, I think a
minimal change makes sense.
llvm-svn: 251816
Summary:
SCEV Predicates represent conditions that typically cannot be derived from
static analysis, but can be used to reduce SCEV expressions to forms which are
usable for different optimizers.
ScalarEvolution now has the rewriteUsingPredicate method which can simplify a
SCEV expression using a SCEVPredicateSet. The normal workflow of a pass using
SCEVPredicates would be to hold a SCEVPredicateSet and every time assumptions
need to be made a new SCEV Predicate would be created and added to the set.
Each time after calling getSCEV, the user will call the rewriteUsingPredicate
method.
We add two types of predicates
SCEVPredicateSet - implements a set of predicates
SCEVEqualPredicate - tests for equality between two SCEV expressions
We use the SCEVEqualPredicate to re-implement stride versioning. Every time we
version a stride, we will add a SCEVEqualPredicate to the context.
Instead of adding specific stride checks, LoopVectorize now adds a more
generic SCEV check.
We only need to add support for this in the LoopVectorizer since this is the
only pass that will do stride versioning.
Reviewers: mzolotukhin, anemet, hfinkel, sanjoy
Subscribers: sanjoy, hfinkel, rengolin, jmolloy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13595
llvm-svn: 251800
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. It turns out that the new code path taken due to
legalizing a scalar_to_vector of i64 -> v2i64 exposes a missing check in a
micro optimization to change a load followed by a scalar_to_vector into a
load and splat instruction on PPC.
llvm-svn: 251798
Summary:
The new function sys::path::user_cache_directory tries to discover
a directory suitable for cache storage for current system user.
On Windows and Darwin it returns a path to system-specific user cache directory.
On Linux it follows XDG Base Directory Specification, what is:
- use non-empty $XDG_CACHE_HOME env var,
- use $HOME/.cache.
Reviewers: chapuni, aaron.ballman, rafael
Subscribers: rafael, aaron.ballman, llvm-commits
Differential Revision: http://reviews.llvm.org/D13801
llvm-svn: 251784
1. Added a set of public interfaces in InstrProfRecord
class to access (read/write) value profile data.
2. Changed IndexedProfile reader and writer code to
use the newly defined interfaces and hide implementation
details.
3. Added a couple of unittests for value profiling:
- Test new interfaces to get and set value profile data
- Test value profile data merging with various scenarios.
No functional change is expected. The new interfaces will also
make it possible to change on-disk format of value prof data
to be more compact (to be submitted).
llvm-svn: 251771
Have `getConstantEvolutionLoopExitValue` work correctly with multiple
entry loops.
As far as I can tell, `getConstantEvolutionLoopExitValue` never did the
right thing for multiple entry loops; and before r249712 it would
silently return an incorrect answer. r249712 changed SCEV to fail an
assert on a multiple entry loop, and this change fixes the underlying
issue.
llvm-svn: 251770
Optimized <8 x i32> to <8 x i16>
<4 x i64> to < 4 x i32>
<16 x i16> to <16 x i8>
All these oprtrations use now AVX512F set (KNL). Before this change it was implemented with AVX2 set.
Differential Revision: http://reviews.llvm.org/D14108
llvm-svn: 251764
This adds support for COFF I386. This is sufficient for code execution in a
32-bit JIT, though, imported symbols need to custom lowered for the redirection.
llvm-svn: 251761
Prevent `createNodeFromSelectLikePHI` from creating SCEV expressions
that break LCSSA.
A better fix for the same issue is to teach SCEVExpander to not break
LCSSA by inserting PHI nodes at appropriate places. That's planned for
the future.
Fixes PR25360.
llvm-svn: 251756
The initial coverage checking code for sample records failed to count
records inside inlined profiles. This change fixes the oversight.
llvm-svn: 251752
This is a bit ugly, but has a few advantages:
* Archive is now easy to copy since there is no Archive -> Child -> Archive
loop.
* It makes it clear that we already checked for errors when finding the Child
data.
llvm-svn: 251750
from its pass harness by providing a lambda to query for AA results.
This allows the legacy pass to easily provide a lambda that uses the
special helpers to construct function AA results from a legacy CGSCC
pass. With the new pass manager (the next patch) the lambda just
directly wraps the intuitive query API.
llvm-svn: 251715
Summary:
When forming expressions for phi nodes having an incoming value from
outside the loop A and a value coming from the previous iteration B
we were forming an AddRec if:
- B was an AddRec
- the value A was equal to the value for B at iteration -1 (or equal
to the value of B shifted by one iteration, at iteration 0)
In this case, we were computing the expression to be the expression of
B, shifted by one iteration.
This changes generalizes the logic above by removing the restriction that
B needs to be an AddRec. For this we introduce two expression rewriters
that allow us to
- shift an expression by one iteration
- get the value of an expression at iteration 0
This allows us to get SCEV expressions for PHI nodes when these expressions
are not AddRecExprs.
Reviewers: sanjoy
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D14175
llvm-svn: 251700
Update the discriminator assignment algorithm
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251689
Update the discriminator assignment algorithm
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251685
* If a scope has already been assigned a discriminator, do not reassign a nested discriminator for it.
* If the file and line both match, even if the column does not match, we should assign a new discriminator for the stmt.
original code:
; #1 int foo(int i) {
; #2 if (i == 3 || i == 5) return 100; else return 99;
; #3 }
; i == 3: discriminator 0
; i == 5: discriminator 2
; return 100: discriminator 1
; return 99: discriminator 3
llvm-svn: 251680
Introduce LLVMSymbolizer::symbolizeInlinedCode() instead of switching
on PrintInlining option passed to the constructor. This will be needed
once we retrun structured data (instead of std::string) from
LLVMSymbolizer and move printing logic out.
llvm-svn: 251675
Summary:
This is mostly NFC. It is a first step in cleaning up LLVMSymbolize
library. It removes "ModuleInfo" class which bundles together ObjectFile
and its debug info context in favor of:
* abstract SymbolizableModule in public headers;
* SymbolizableObjectFile subclass in implementation.
Additionally, SymbolizableObjectFile is now created via factory, so we
can properly detect object parsing error at this stage instead of keeping
the broken half-parsed object. As a next step, we would be able to
propagate the error all the way back to the library user.
Further improvements might include:
* factoring out the logic of finding appropriate file with debug info
for a given object file, and caching all parsed object files into a
separate class [A].
* factoring out DILineInfo rendering [B].
This would make what is now a heavyweight "LLVMSymbolizer" a relatively
straightforward class, that calls into [A] to turn filepath into a
SymbolizableModule, delegates actual symbolization to concrete SymbolizableModule
implementation, and lets [C] render the result.
Reviewers: dblaikie, echristo, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14099
llvm-svn: 251662
This patch generalizes the zeroing of vector elements with the BLEND instructions. Currently a zero vector will only blend if the shuffled elements are correctly inline, this patch recognises when a vector input is zero (or zeroable) and modifies a local copy of the shuffle mask to support a blend. As a zeroable vector input may not be all zeroes, the zeroable vector is regenerated if necessary.
Differential Revision: http://reviews.llvm.org/D14050
llvm-svn: 251659
transformations in FunctionAttrs rather than building a new one each
time.
This isn't trivial because there are different heuristics from different
passes for exactly what set they want. The primary difference is whether
an *overridable* function completely disables the synthesis of
attributes. I've modeled this by directly testing for overridable, and
using the common set that excludes external and opt-none functions.
This does cause some changes by disabling more optimizations in the face
of opt-none. Specifically, we were still optimizing *calls* to opt-none
functions based on their attributes, just not the bodies. It seems
better to be conservative on both fronts given the intended semanticas
here (best effort to not assume or disturb anything). I've not tried to
test this change as it seems complex, brittle, and not important to the
implicit contract of opt-none. Instead, it seems more like a choice that
should be dictated by the simplified implementation and the change to be
acceptable differences within the space of opt-none.
A big benefit here is that these transformations no longer rely on the
legacy pass manager's SCC types, they just work on generic sets of
function pointers. This will make it easy to re-use their logic in the
new pass manager.
I've also made the transforms static functions instead of members where
trivial while I was touching the signatures.
llvm-svn: 251640
This was discovered to be necessary while running memchr-01.ll with
-verify-machinstrs, because it is not allowed to have a phys reg live
accross block boundaries while on SSA form, if the register is
allocatable (expect in entry block and landing pads).
In this test case, stringRRE pseudos are expanded after isel by adding
a loop block which produces a live out CC register. To make the test
pass, it was also necessary to not say that StringRRELoop pseudo uses
R0L, this is only true for the StringRRE opcode.
-verify-machineinstrs added to memchr-01.ll test.
New test case int-cmp-51.ll to test that MachineCSE can eliminate
an identical compare (which it couldn't do before).
Reviewed by Ulrich Weigand
llvm-svn: 251634
Summary:
This commit resolves wrong opcodes for ll and sc instructions for r6 architecutres, which were generated in method MipsTargetLowering::emitAtomicBinary.
Author: Jelena.Losic
Reviewers: dsanders
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D13593
llvm-svn: 251629
Summary:
ARMv6KZ cores were set up incorrectly in ARM.td; also, the SMI mnemonic
(the old name for SMC, as defined in ARMv6KZ) wasn't supported.
Reviewers: jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14154
llvm-svn: 251627
This patch unify the 39-bit and 42-bit mapping for aarch64 to use only
one instrumentation algorithm. This removes compiler flag
SANITIZER_AARCH64_VMA requirement for MSAN on aarch64.
The mapping to use now is for 39 and 42-bits:
0x00000000000ULL-0x01000000000ULL MappingDesc::INVALID
0x01000000000ULL-0x02000000000ULL MappingDesc::SHADOW
0x02000000000ULL-0x03000000000ULL MappingDesc::ORIGIN
0x03000000000ULL-0x04000000000ULL MappingDesc::SHADOW
0x04000000000ULL-0x05000000000ULL MappingDesc::ORIGIN
0x05000000000ULL-0x06000000000ULL MappingDesc::APP
0x06000000000ULL-0x07000000000ULL MappingDesc::INVALID
0x07000000000ULL-0x08000000000ULL MappingDesc::APP
And only for 42-bits:
0x08000000000ULL-0x09000000000ULL MappingDesc::INVALID
0x09000000000ULL-0x0A000000000ULL MappingDesc::SHADOW
0x0A000000000ULL-0x0B000000000ULL MappingDesc::ORIGIN
0x0B000000000ULL-0x0F000000000ULL MappingDesc::INVALID
0x0F000000000ULL-0x10000000000ULL MappingDesc::APP
0x10000000000ULL-0x11000000000ULL MappingDesc::INVALID
0x11000000000ULL-0x12000000000ULL MappingDesc::APP
0x12000000000ULL-0x17000000000ULL MappingDesc::INVALID
0x17000000000ULL-0x18000000000ULL MappingDesc::SHADOW
0x18000000000ULL-0x19000000000ULL MappingDesc::ORIGIN
0x19000000000ULL-0x20000000000ULL MappingDesc::INVALID
0x20000000000ULL-0x21000000000ULL MappingDesc::APP
0x21000000000ULL-0x26000000000ULL MappingDesc::INVALID
0x26000000000ULL-0x27000000000ULL MappingDesc::SHADOW
0x27000000000ULL-0x28000000000ULL MappingDesc::ORIGIN
0x28000000000ULL-0x29000000000ULL MappingDesc::SHADOW
0x29000000000ULL-0x2A000000000ULL MappingDesc::ORIGIN
0x2A000000000ULL-0x2B000000000ULL MappingDesc::APP
0x2B000000000ULL-0x2C000000000ULL MappingDesc::INVALID
0x2C000000000ULL-0x2D000000000ULL MappingDesc::SHADOW
0x2D000000000ULL-0x2E000000000ULL MappingDesc::ORIGIN
0x2E000000000ULL-0x2F000000000ULL MappingDesc::APP
0x2F000000000ULL-0x39000000000ULL MappingDesc::INVALID
0x39000000000ULL-0x3A000000000ULL MappingDesc::SHADOW
0x3A000000000ULL-0x3B000000000ULL MappingDesc::ORIGIN
0x3B000000000ULL-0x3C000000000ULL MappingDesc::APP
0x3C000000000ULL-0x3D000000000ULL MappingDesc::INVALID
0x3D000000000ULL-0x3E000000000ULL MappingDesc::SHADOW
0x3E000000000ULL-0x3F000000000ULL MappingDesc::ORIGIN
0x3F000000000ULL-0x40000000000ULL MappingDesc::APP
And although complex it provides a better memory utilization that
previous one.
llvm-svn: 251624
Summary:
The microMIPS register class GPRMM16 does not contain the $zero register.
However, MipsSEDAGToDAGISel::replaceUsesWithZeroReg() would replace uses
of the $dst register:
[d]addiu, $dst, $zero, 0
with the $zero register, without checking for membership in the register
class of the target machine operand.
Reviewers: dsanders
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D13984
llvm-svn: 251622
Since the verifier will give false reports if it incorrectly thinks MI is
loading or storing using an FI, it is necessary to scan memoperands and
find out how the FI is used in the instruction. This should be relatively
rare.
Needed to make CodeGen/SystemZ/spill-01.ll pass, which now runs with this flag.
Reviewed by Quentin Colombet.
llvm-svn: 251620
Summary:
Conversion opcode name format should be f64.convert_u/i64 not f64_convert_u
Author: s3ththompson
Reviewers: jfb
Subscribers: sunfish, jfb, llvm-commits, dschuff
Differential Revision: http://reviews.llvm.org/D14160
llvm-svn: 251613
Clang driver now injects -u<hook_var> flag in the linker
command line, in which case user function is not needed
any more.
Differential Revision: http://reviews.llvm.org/D14033
llvm-svn: 251612
This was a layering violation in ScheduleDAGInstrs (and
MachineSchedulerBase) they both shouldn't know directly whether they are
used by the PostMachineScheduler or the MachineScheduler.
llvm-svn: 251608
Somewhat shockingly for an analysis pass which is computing constant ranges, LVI did not understand the ranges provided by range metadata.
As part of this change, I included a change to CVP primarily because doing so made it much easier to write small self contained test cases. CVP was previously only handling the non-local operand case, but given that LVI can sometimes figure out information about instructions standalone, I don't see any reason to restrict this. There could possibly be a compile time impact from this, but I suspect it should be minimal. If anyone has an example which substaintially regresses, please let me know. I could restrict the block local handling to ICmps feeding Terminator instructions if needed.
Note that this patch continues a somewhat bad practice in LVI. In many cases, we know facts about values, and separate context sensitive facts about values. LVI makes no effort to distinguish and will frequently cache the same value fact repeatedly for different contexts. I would like to change this, but that's a large enough change that I want it to go in separately with clear documentation of what's changing. Other examples of this include the non-null handling, and arguments.
As a meta comment: the entire motivation of this change was being able to write smaller (aka reasonable sized) test cases for a future patch teaching LVI about select instructions.
Differential Revision: http://reviews.llvm.org/D13543
llvm-svn: 251606
Follow on to http://reviews.llvm.org/D13074, implementing something pointed out by Sanjoy. His truth table from his comment on that bug summarizes things well:
LHS | RHS | LHS >=s RHS | LHS implies RHS
0 | 0 | 1 (0 >= 0) | 1
0 | 1 | 1 (0 >= -1) | 1
1 | 0 | 0 (-1 >= 0) | 0
1 | 1 | 1 (-1 >= -1) | 1
The key point is that an "i1 1" is the value "-1", not "1".
Differential Revision: http://reviews.llvm.org/D13756
llvm-svn: 251597
The most common use case is when eliminating redundant range checks in an example like the following:
c = a[i+1] + a[i];
Note that all the smarts of the transform (the implication engine) is already in ValueTracking and is tested directly through InstructionSimplify.
Differential Revision: http://reviews.llvm.org/D13040
llvm-svn: 251596
To be able to maximize the bandwidth during vectorization, this patch provides a new flag vectorizer-maximize-bandwidth. When it is turned on, the vectorizer will determine the vectorization factor (VF) using the smallest instead of widest type in the loop. To avoid increasing register pressure too much, estimates of the register usage for different VFs are calculated so that we only choose a VF when its register usage doesn't exceed the number of available registers.
llvm-svn: 251592
We cannot form ctr-based loops around function calls, including calls to
__tls_get_addr used for PIC TLS variables. References to such TLS variables,
however, might be buried within constant expressions, and so we need to search
the entire constant expression to be sure that no references to such TLS
variables exist.
Fixes PR25256, reported by Eric Schweitz. This is a slightly-modified version
of the patch suggested by Eric in the bug report, and a test case I created.
llvm-svn: 251582
As a follow-up to r251566, do the same for the other optionally-supported
register classes (mostly for vector registers). Don't return an unavailable
register class (which would cause an assert later), but fail cleanly when
provided an unsupported inline asm constraint.
llvm-svn: 251575
At the LLVM level this ABI is essentially a minimal modification of AAPCS to
support 16-byte alignment for vector types and the stack.
llvm-svn: 251570
These MachO file directives are used by linkers and other tools to provide
compatibility information, much like the existing .ios_version_min and
.macosx_version_min.
llvm-svn: 251569
This adds the flag -mllvm -sample-profile-check-coverage=N to the
SampleProfile pass. N is the percent of input sample records that the
user expects to apply. If the pass does not use N% (or more) of the
sample records in the input, it emits a warning.
This is useful to detect some forms of stale profiles. If the code has
drifted enough from the original profile, there will be records that do
not match the IR anymore.
This will not detect cases where a sample profile record for line L is
referring to some other instructions that also used to be at line L.
llvm-svn: 251568
It looks like this broke the stage 2 builder:
http://lab.llvm.org:8080/green/job/clang-stage2-configure-Rlto/6989/
Original commit message:
AliasSetTracker does not need to convert the access mode to ModRefAccess if the
new visited UnknownInst has only 'REF' modrefinfo to existing pointers in the
sets.
Patch by Andrew Zhogin!
llvm-svn: 251562
This teaches SCEV to compute //max// backedge taken counts for loops
like
for (int i = k; i != 0; i >>>= 1)
whatever();
SCEV yet cannot represent the exact backedge count for these loops, and
this patch does not change that. This is really geared towards teaching
SCEV that loops like the above are *not* infinite.
llvm-svn: 251558
Summary:
If P branches to Q conditional on C and Q branches to R conditional on
C' and C => C' then the branch conditional on C' can be folded to an
unconditional branch.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13972
llvm-svn: 251557
Add a couple of helper methods to make the primary
raw profile reader interface's implementation more
readable. It also hides more format details. This
patch has no functional change.
llvm-svn: 251546
The pass was keeping around a lot of per-function data (visited blocks,
edges, dominance, etc) that is just taking up memory for no reason. In
fact, from function to function it could potentially confuse the
propagator since some maps are indexed by line offsets which can be
common between functions.
llvm-svn: 251531
In getArgModRefInfo we consider all arguments as having MRI_ModRef.
However for arguments marked with readonly attribute we can return
more precise answer - MRI_Ref.
Differential Revision: http://reviews.llvm.org/D13992
llvm-svn: 251525
I think these were affected by a change way back when to stop printing newlines in Value::dump() by default. This change simply allows the debug output to be readable.
NFC.
llvm-svn: 251517
Summary:
This patch handles assembly and disassembly, but not codegen, as of yet.
Additionally, it fixes a bug whereby SP and PC as shifted-reg operands
were treated as predictable in ARMv7 Thumb; and it enables the tests
for invalid and unpredictable instructions to run on both ARMv7 and ARMv8.
Reviewers: jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14141
llvm-svn: 251516
When checking if an indirect global (a global with pointer type) is only assigned by allocation functions, first check if the global is itself initialized. If it is, it's not only assigned by allocation functions.
This fixes PR25309. Thanks to David Majnemer for reducing the test case!
llvm-svn: 251508
Summary:
This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13974
llvm-svn: 251492
Change InstrProfReaderIndex from typedef into a wrapper
class with helper methods. This makes the index profile
reader code more readable. It also hides the implementation
detail of the index format and make it more flexible to allow
support different (or more than one) format in the future.
llvm-svn: 251491
This also lets us remove the versions of the functions that took a statically sized array as we can rely on ArrayRef implicit conversion now.
llvm-svn: 251490
cntlz is the old POWER mnemonic. cntlzw is the PowerPC mnemonic.
This change fixes an issue when -no-integrated-as: The opcode cntlz is
unrecognized by gas
Alias the POWER mnemonic cntlz[.] to the PowerPC mnemonic cntlzw[.]
This is done for because the POWER cntlz mnemonic has be used by LLVM for
a very long time. We need to make sure that assembly programs
that are using the cntlz[.] do not break with this change.
Change PowerPC tests to reflect the insn change from cntlz to cntlzw.
Add assembly test to verify cntlz[.] is encoded correctly.
Patch by Tom Rix!
llvm-svn: 251489
Summary: This will allow a later patch to `JumpThreading` use this functionality.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13971
llvm-svn: 251488
Summary:
Don't call `computeKnownBitsFromRangeMetadata` for extended loads --
this can cause a mismatch between the width of the !range metadata and
the width of the APInt's accumulating `KnownZero` (and `KnownOne` in the
future). This isn't a problem now, but will be after a future change.
Note: this can be made more aggressive in the future.
Reviewers: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14107
llvm-svn: 251486
r248010 changed the -debug output to use short ids, but did not
similarly modify the graph printer. Change to be consistent, for ease of
cross-reference.
llvm-svn: 251465
CatchReturnInst has side-effects: it runs a destructor. This destructor
could conceivably run forever/call exit/etc. and should not be removed.
llvm-svn: 251461
Use 10 bits to represent calling convention ID's instead of 13, and
update the bitcode compatibility tests accordingly. We now error-out in
the bitcode reader when we see bad calling conv ID's.
Thanks to rnk and dexonsmith for feedback!
Differential Revision: http://reviews.llvm.org/D13826
llvm-svn: 251452
AliasSetTracker does not need to convert the access mode to ModRefAccess if the
new visited UnknownInst has only 'REF' modrefinfo to existing pointers in the
sets.
Patch by Andrew Zhogin!
llvm-svn: 251451
This is a usage of the IR-level fast-math-flags now that they are propagated to SDNodes.
This was originally part of D8900.
Removing the global 'enable-unsafe-fp-math' checks will require auto-upgrade and
possibly other changes.
Differential Revision: http://reviews.llvm.org/D9708
llvm-svn: 251450
A PHI on a catchpad might be used by both edges out of the catchpad,
feeding back into a loop. In this case, just use the insertion point.
Anything more clever would require new basic blocks or PHI placement.
llvm-svn: 251442
This recommits r250719, which caused a failure in SPEC2000.gcc
because of the incorrect insert point for the new wider load.
Convert two halfword loads into a single 32-bit word load with bitfield extract
instructions. For example :
ldrh w0, [x2]
ldrh w1, [x2, #2]
becomes
ldr w0, [x2]
ubfx w1, w0, #16, #16
and w0, w0, #ffff
llvm-svn: 251438
When optimization is disabled, edge weights that are stored in MBB won't be used so that we don't have to store them. Currently, this is done by adding successors with default weight 0, and if all successors have default weights, the weight list will be empty. But that the weight list is empty doesn't mean disabled optimization (as is stated several times in MachineBasicBlock.cpp): it may also mean all successors just have default weights.
We should discourage using default weights when adding successors, because it is very easy for users to forget update the correct edge weights instead of using default ones (one exception is that the MBB only has one successor). In order to detect such usages, it is better to differentiate using default weights from the case when optimizations is disabled.
In this patch, a new interface addSuccessorWithoutWeight(MBB*) is created for when optimization is disabled. In this case, MBB will try to maintain an empty weight list, but it cannot guarantee this as for many uses of addSuccessor() whether optimization is disabled or not is not checked. But it can guarantee that if optimization is enabled, then the weight list always has the same size of the successor list.
Differential revision: http://reviews.llvm.org/D13963
llvm-svn: 251429
Summary:
This change could be way off-piste, I'm looking for any feedback on whether it's an acceptable approach.
It never seems to be a problem to gobble up as many reduction values as can be found, and then to attempt to reduce the resulting tree. Some of the workloads I'm looking at have been aggressively unrolled by hand, and by selecting reduction widths that are not constrained by a vector register size, it becomes possible to profitably vectorize. My test case shows such an unrolling which SLP was not vectorizing (on neither ARM nor X86) before this patch, but with it does vectorize.
I measure no significant compile time impact of this change when combined with D13949 and D14063. There are also no significant performance regressions on ARM/AArch64 in SPEC or LNT.
The more principled approach I thought of was to generate several candidate tree's and use the cost model to pick the cheapest one. That seemed like quite a big design change (the algorithms seem very much one-shot), and would likely be a costly thing for compile time. This seemed to do the job at very little cost, but I'm worried I've misunderstood something!
Reviewers: nadav, jmolloy
Subscribers: mssimpso, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D14116
llvm-svn: 251428
Summary:
Currently, when the SLP vectorizer considers whether a phi is part of a reduction, it dismisses phi's whose incoming blocks are not the same as the block containing the phi. For the patterns I'm looking at, extending this rule to allow phis whose incoming block is a containing loop latch allows me to vectorize certain workloads.
There is no significant compile-time impact, and combined with D13949, no performance improvement measured in ARM/AArch64 in any of SPEC2000, SPEC2006 or LNT.
Reviewers: jmolloy, mcrosier, nadav
Subscribers: mssimpso, nadav, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D14063
llvm-svn: 251425
Summary:
Certain workloads, in particular sum-of-absdiff loops, can be vectorized using SLP if it can treat select instructions as reduction values.
The test case is a bit awkward. The AArch64 cost model needs some tuning to not be so pessimistic about selects. I've had to tweak the SLP threshold here.
Reviewers: jmolloy, mzolotukhin, spatel, nadav
Subscribers: nadav, mssimpso, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D13949
llvm-svn: 251424
When emitting a remark for a conditional branch annotation, the remark
uses the line location information of the conditional branch in the
message. In some cases, that information is unavailable and the
optimization would segfaul. I'm still not sure whether this is a bug or
WAI, but the optimizer should not die because of this.
llvm-svn: 251420
The existing behavior was correct on Darwin, which is probably the
platform it was written for.
Before this change, we would rewrite "align 8" to ".align 3" and then
fail to make it through the integrated assembler because 3 is not a
power of 2.
Differential Revision: http://reviews.llvm.org/D14120
llvm-svn: 251418
convert float to half with mask/maskz for the reg to reg version and mask for the reg to mem version (there is no maskz version for reg to mem).
Differential Revision: http://reviews.llvm.org/D14113
llvm-svn: 251409
Summary: After D13851 landed, we saw backend crashes when compiling the reduced test case included in this patch. The right fix seems to be to allow these vector types for expansion in instruction selection.
Reviewers: rengolin, t.p.northover
Subscribers: RKSimon, t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14082
llvm-svn: 251401
We want to insert no-op casts as close as possible to the def. This is
tricky when the cast is of a PHI node and the BasicBlocks between the
def and the use cannot hold any instructions. Iteratively walk EH pads
until we hit a non-EH pad.
This fixes PR25326.
llvm-svn: 251393
GNU tools require elfiamcu to take up the entire OS field, so, e.g.
i?86-*-linux-elfiamcu is not considered a legal triple.
Make us compatible.
Differential Revision: http://reviews.llvm.org/D14081
llvm-svn: 251390
This avoid mentioning the table name an extra time and allows the lookup to be done directly in the ifs by relying on the bool conversion of the pointer.
While there make use of ArrayRef and std::find_if.
llvm-svn: 251382
No functionality changed here, but the indentation is substantially
reduced and IMO the code is much easier to read. I've also added some
helpful comments.
This is just a clean-up I wrote while studying the code, and that has
been in my backlog for a while.
llvm-svn: 251381
Use `getUnsignedMax` directly instead of special casing a wrapped
ConstantRange.
The previous code would have been "buggy" (and this would have been a
semantic change) if LLVM allowed !range metadata to denote full
ranges. E.g. in
%val = load i1, i1* %ptr, !range !{i1 1, i1 1} ;; == full set
ValueTracking would conclude that the high bit (IOW the only bit) in
%val was zero.
Since !range metadata does not allow empty or full ranges, this change
is just a minor stylistic improvement.
llvm-svn: 251380
When taking the remainder of a value divided by a constant, visitREM()
attempts to convert the REM to a longer but faster sequence of instructions.
This conversion calls combine() on a speculative DIV instruction. Commit
rL250825 may cause this combine() to return a DIVREM, corrupting nearby nodes.
Flow eventually hits unreachable().
This patch adds a test case and a check to prevent visitREM() from trying
to convert the REM instruction in cases where a DIVREM is possible.
See http://reviews.llvm.org/D14035
llvm-svn: 251373
Summary:
Previously we maintained two separate switch statements that had to be kept in
sync. This patch merges them into a single switch.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14012
llvm-svn: 251369
LLVMSymbolizer::Options is mostly used in LLVMSymbolizer class anyway.
Let's keep their usage restricted to that class, especially given that
it's worth to move ModuleInfo to a different header, independent from
the symbolizer class.
llvm-svn: 251363
Summary:
In particular, this CL speeds up the official Chrome linking with LTO by
1.8x.
See more details in https://crbug.com/542426
Reviewers: dblaikie
Subscribers: jevinskie
Differential Revision: http://reviews.llvm.org/D13918
llvm-svn: 251353
Both VLDRS and VLDRD fault if the memory is not 4 byte aligned, which wasn't
really being checked before, leading to faults at runtime.
llvm-svn: 251352
Summary: This idiom is used elsewhere in LLVM, but was overlooked here.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13628
llvm-svn: 251348
This is a patch to improve StringTableBuilder's performance. That class'
finalize function is very hot particularly in LLD because the function
does tail-merge strings in string tables or SHF_MERGE sections.
Generic std::sort-style sorter is not efficient for sorting strings.
The function implemented in this patch seems to be more efficient.
Here's a benchmark of LLD to link Clang with or without this patch.
The numbers are medians of 50 runs.
-O0
real 0m0.455s
real 0m0.430s (5.5% faster)
-O3
real 0m0.487s
real 0m0.452s (7.2% faster)
Since that is a benchmark of the whole linker, the speedup of
StringTableBuilder itself is much more than that.
http://reviews.llvm.org/D14053
llvm-svn: 251337
We should remove noalias along with dereference and dereference_or_null attributes
because statepoint could potentially touch the entire heap including noalias objects.
Differential Revision: http://reviews.llvm.org/D14032
llvm-svn: 251333
This adds a couple of optimization remarks to the SamplePGO
transformation. When it decides to inline a hot function (to mimic the
inline stack and repeat useful inline decisions in the original build).
It will also report branch destinations. For instance, given the code
fragment:
6 if (i < 1000)
7 sum -= i;
8 else
9 sum += -i * rand();
If the 'else' branch is taken most of the time, building this code with
-Rpass=sample-profile will produce:
a.cc:9:14: remark: most popular destination for conditional branches at small.cc:6:9 [-Rpass=sample-profile]
sum += -i * rand();
^
llvm-svn: 251330
Processing bitcode from a different LLVM version can lead to
unexpected behavior. The LLVM project guarantees autoupdating
bitcode from a previous minor revision for the same major, but
can't make any promise when reading bitcode generated from a
either a non-released LLVM, a vendor toolchain, or a "future"
LLVM release. This patch aims at being more user-friendly and
allows a bitcode produce to emit an optional block at the
beginning of the bitcode that will contains an opaque string
intended to describe the bitcode producer information. The
bitcode reader will dump this information alongside any error it
reports.
The optional block also includes an "epoch" number, monotonically
increasing when incompatible changes are made to the bitcode. The
reader will reject bitcode whose epoch is different from the one
expected.
Differential Revision: http://reviews.llvm.org/D13666
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 251325
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
The previous iteration of this change was reverted in r250461. This
version leaves the generic, compiler-rt based implementation in
SafeStack.cpp instead of moving it to TargetLoweringBase in order to
allow testing without a TargetMachine.
llvm-svn: 251324
In PIC mode we were previously computing global variable addresses (or GOT
entry addresses) by adding the PC, the PC-relative GOT displacement and
the GOT-relative symbol/GOT entry displacement. Because the latter two
displacements are fixed, we ended up performing one more addition than
necessary.
This change causes us to compute addresses using a single PC-relative
displacement, resulting in a shorter code sequence. This reduces code size
by about 4% in a recent build of Chromium for Android.
As a result of this change we no longer need to compute the GOT base address
in the ARM backend, which allows us to remove the Global Base Reg pass and
SDAG lowering for the GOT.
We also now no longer use the GOT when addressing a symbol which is known
to be defined in the same linkage unit. Specifically, the symbol must have
either hidden visibility or a strong definition in the current module in
order to not use the the GOT.
This is a change from the previous behaviour where we would use the GOT to
address externally visible symbols defined in the same module. I think the
only cases where this could matter are cases involving symbol interposition,
but we don't really support that well anyway.
Differential Revision: http://reviews.llvm.org/D13650
llvm-svn: 251322
This issue is triggered in PGO mode when bootstrapping LLVM. It seems that it is not guaranteed that edge weights are always greater than zero which are read from profile data.
llvm-svn: 251317
Instead of XFAIL-ing the tests with the wrong usage of the "interrupt"
attribute, we should check that we emit the correct error messages to
the user.
llvm-svn: 251295
Even though we may not know the value of the shifter operand, it's possible we know the shifter operand is non-zero. This can allow us to infer more known bits - for example:
%1 = load %p !range {1, 5}
%2 = shl %q, %1
We don't know %1, but we do know that it is nonzero so %2[0] is known zero, and importantly %2 is known non-zero.
Calling isKnownNonZero is nontrivially expensive so use an Optional to run it lazily and cache its result.
llvm-svn: 251294
Vectorization of memory instruction (Load/Store) is possible when the pointer is coming from GEP. The GEP analysis allows to estimate the profit.
In some cases we have a "bitcast" between GEP and memory instruction.
I added code that skips the "bitcast".
http://reviews.llvm.org/D13886
llvm-svn: 251291