This patch introduces a 'stub_addr' builtin that can be used to find the address
of the stub for a given (<file>, <section>, <symbol>) tuple. This address can be
used both to verify the contents of stubs (by loading from the returned address)
and to verify references to stubs (by comparing against the returned address).
Example (1) - Verifying stub contents:
Load 8 bytes (assuming a 64-bit target) from the stub for 'x' in the __text
section of f.o, and compare that value against the addres of 'x'.
# rtdyld-check: *{8}(stub_addr(f.o, __text, x) = x
Example (2) - Verifying references to stubs:
Decode the immediate of the instruction at label 'l', and verify that it's
equal to the offset from the next instruction's PC to the stub for 'y' in the
__text section of f.o (i.e. it's the correct PC-rel difference).
# rtdyld-check: decode_operand(l, 4) = stub_addr(f.o, __text, y) - next_pc(l)
l:
movq y@GOTPCREL(%rip), %rax
Since stub inspection requires cooperation with RuntimeDyldImpl this patch
pimpl-ifies RuntimeDyldChecker. Its implementation is moved in to a new class,
RuntimeDyldCheckerImpl, that has access to the definition of RuntimeDyldImpl.
llvm-svn: 213698
This is a part of a larger change to move the entry point
processing to a later pass than the driver. On Windows the default
entry point function varies depending on user-provided functions.
That means the driver is not able to correctly know the entry point
function name. Only passes after the core linker can infer it.
llvm-svn: 213697
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
This fixes a diagnostic emitted by GCC.
llvm-svn: 213696
printf's %p format specifier expects an argument of type void-pointer,
not type PyThreadState*. Fix this with a static_cast.
Differential Revision: http://reviews.llvm.org/D4632
llvm-svn: 213695
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
This silences a warning emitted by GCC when building LLDB.
Differential Revision: http://reviews.llvm.org/D4631
llvm-svn: 213693
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
This fixes a warning emitted by GCC.
Differential Revision: http://reviews.llvm.org/D4624
llvm-svn: 213692
GCC warns on reinterpret_cast expressions involving a void-pointer
source and a pointer-to-function destination. Take a detour through
intptr_t to silence it.
Differential Revision: http://reviews.llvm.org/D4626
llvm-svn: 213691
Factor out the addend encoding into a helper function and simplify the
processRelocationRef.
Also add a few simple rtdyld tests. More tests to come once GOTs can be tested too.
Related to <rdar://problem/17768539>
llvm-svn: 213689
In MachO for AArch64 it is possible to have an explicit addend defined by
the ARM64_RELOC_ADDEND relocation or having an addend encoded within the
instruction. Only one of them are allowed per relocation.
llvm-svn: 213687
Convert the CBNZ backward branch instruction to CMP and BNE
avoiding illegal backwards branch and making the assembly code
in synh-ops.h to be UAL compliant.
Patch by: Sumanth Gundapaneni
llvm-svn: 213685
The CMake assembler build system ignores the .S assembly files in builtins
library build. This patch fixes the issue.
Patch by: Sumanth Gundapaneni
llvm-svn: 213684
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
Differential Revision: http://reviews.llvm.org/D4627
llvm-svn: 213682
Platforms which don't use LLDB's built-in demangler don't use the
'mangled_length' variable. Instead, replace it's only use by an
expression it is equivalent to.
Differential Revision: http://reviews.llvm.org/D4625
llvm-svn: 213681
Summary:
If during constructing a standard conversion sequence, we resolve an
overload, we need to adjust the from type in the SCS according to the
resolved operator.
I found this bug when debugging PR20218. This doesn't seem to be
observable, so there is no good way of testing it.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4402
llvm-svn: 213680
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.
It implements :
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))
Differential Revision: http://reviews.llvm.org/D4068
llvm-svn: 213678
"((~A & B) | A) -> (A | B)" and "((A & B) | ~A) -> (~A | B)"
Original Patch credit to Ankit Jain !!
Differential Revision: http://reviews.llvm.org/D4591
llvm-svn: 213676
The new implementation is located in source/Core/FastDemangle.cpp. It’s fairly straightforward C code with a few basic C++ extensions. It should compile with little or no change on a variety of platforms, but of course it is still only useful for symbols that comply with the Itanium ABI mangling spec (plus a few Clang extensions.)
<rdar://problem/15397553> <rdar://problem/15794867>
llvm-svn: 213671
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
llvm-svn: 213670
Currently, the test runner makes the assumption that it will run
commands through /bin/sh. This is obviously not true on Windows,
so this patch abstracts this logic out somewhat. Instead of
having the caller build the command string himself, the caller
will now pass in argument list of the form [[a, b], [c, d], ...]
which will get converted into a string of the form a b; c d or
a b && c d, depending on the platform.
Reviewed by: Todd Fiala
Differential Revision: http://reviews.llvm.org/D4590
llvm-svn: 213669
Without this, we produce non-extern relocations when targeting older OS X
versions that ld64 can't cope with in the particular context of __eh_frame
sections (who'd want generic relocation-processing anyway?).
This means that an updated linker (ld64 from Xcode 3.2.6 or later) may be
needed when targeting such platforms with a modern version of LLVM, but this is
probably the case anyway and a reasonable requirement.
PR20212, rdar://problem/17544795
llvm-svn: 213665
to globally be controlled. Individual targets (e.g. ExceptionDemo) can
still override this by using LLVM_REQUIRE_RTTI and LLVM_REQUIRE_EH if
they need to be compiled with RTTI or exception handling respectively.
llvm-svn: 213663
- When CMake builds the documentation with sphinx-build it treats
warnings as errors. We should be consistent with what we do in
CMake.
- Having warnings treated as errors will hopefully encourage
developers to write documentation correctly.
llvm-svn: 213661
Summary:
This tries to find code similar that immediately destroys
an object that looks like it's trying to follow RAII.
{
scoped_lock(&global_mutex);
critical_section();
}
This checker will have false positives if someone uses this pattern
to legitimately invoke a destructor immediately (or the statement is
at the end of a scope anyway). To reduce the number we ignore this
pattern in macros (this is heavily used by gtest) and ignore objects
with no user-defined destructor.
Reviewers: alexfh, djasper
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4615
llvm-svn: 213647