always be disambiguated as sldtw. sldtw and sldtq with
a mem operands have the same effect, but sldtw is more
compact. Force it to sldtw, resolving rdar://8017530
llvm-svn: 113186
of a mneumonic, report operand errors with better location
info. For example, we now report:
t.s:6:14: error: invalid operand for instruction
cwtl $1
^
but we fail for common cases like:
t.s:11:4: error: invalid operand for instruction
addl $1, $1
^
because we don't know if this is supposed to be the reg/imm or imm/reg
form.
llvm-svn: 113178
failed because a subtarget feature was not enabled. Use this to
remove a bunch of hacks from the X86AsmParser for rejecting things
like popfl in 64-bit mode. Previously these hacks weren't needed,
but were important to get a message better than "invalid instruction"
when used in the wrong mode.
This also fixes bugs where pushal would not be rejected correctly in
32-bit mode (just pusha).
llvm-svn: 113166
- Currently includes a hack to limit ourselves to "In32BitMode" and "In64BitMode", because we don't have the other infrastructure to properly deal with setting SSE, etc. features on X86.
llvm-svn: 108677
- Unfortunate, but necessary for now to handle subtarget instruction matching. Eventually we should factor out the lower level target machine information so we don't need to do this.
llvm-svn: 108664
instruction. Added the 64-bit version "jrcxz" so it is recognized and also
added the checks for incorrect uses of "jcxz" in 64-bit mode and "jrcxz" in
32-bit mode. Still to do is to correctly handle the encoding of the
instruction adding the Address-size override prefix byte, 0x67, when the width
of the count register is not the same as the mode the machine is running in.
Which for example means the encoding of "jecxz" depends if you are assembling
as a 32-bit target or a 64-bit target.
llvm-svn: 105661
are st(0). These can be encoded using an opcode for storing in st(0) or using
an opcode for storing in st(i), where i can also be 0. To allow testing with
the darwin assembler and get a matching binary the opcode for storing in st(0)
is now used. To do this the same logical trick is use from the darwin assembler
in converting things like this:
fmul %st(0), %st
into this:
fmul %st(0)
by looking for the second operand being X86::ST0 for specific floating point
mnemonics then removing the second X86::ST0 operand. This also has the add
benefit to allow things like:
fmul %st(1), %st
that llvm-mc did not assemble.
llvm-svn: 104634
instructions which have no direct register usage.
Darwin 'as' accepts:
add $0, (%rax)
but rejects
mov $0, (%rax)
for example.
Given that, only accept suffix matches which match exactly one form. We still
need to emit nice diagnostics for failures...
llvm-svn: 103015
- The idea is that when a match fails, we just try to match each of +'b', +'w',
+'l'. If exactly one matches, we assume this is a mnemonic prefix and accept
it. If all match, we assume it is width generic, and take the 'l' form.
- This would be a horrible hack, if it weren't so simple. Therefore it is an
elegant solution! Chris gets the credit for this particular elegant
solution. :)
- Next step to making this more robust is to have the X86 matcher generate the
mnemonic prefix information. Ideally we would also compute up-front exactly
which mnemonic to attempt to match, but this may require more custom code in
the matcher than is really worth it.
llvm-svn: 103012
temporary workaround for matching inc/dec on x86_64 to the correct instruction.
- This hack will eventually be replaced with a robust mechanism for handling
matching instructions based on the available target features.
llvm-svn: 98858
Lock prefix, Repeat string operation prefixes and the Segment override prefixes.
Also added versions of the move string and store string instructions without the
repeat prefixes to X86InstrInfo.td. And finally marked the rep versions of
move/store string records in X86InstrInfo.td as isCodeGenOnly = 1 so tblgen is
happy building the disassembler files.
llvm-svn: 95252
something totally broken and parsing them as immediates, but the .td file also
had the wrong match class so things sortof worked. Except, that is, that we
would parse
movl $0, %eax
as
movl 0, %eax
Feel free to guess how well that worked.
llvm-svn: 94869
be static. Also made it possible for clients to get it
and no other functions from ...GenAsmMatcher.inc by
defining REGISTERS_ONLY before including GenAsmMatcher.inc.
This sets the stage for target-specific lexers that can
identify registers and return AsmToken::Register as
appropriate.
llvm-svn: 94266
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
llvm-svn: 94164
the new ParseInstruction method just parses and returns a list of
target operands. A new MatchInstruction interface is used to
turn the operand list into an MCInst.
This requires new/deleting all the operands, but it also gives
targets the ability to use polymorphic operands if they want to.
llvm-svn: 93469
that things like .word can be parsed as target specific. Moved parsing .word
out of AsmParser.cpp into X86AsmParser.cpp as it is 2 bytes on X86 and 4 bytes
for other targets that support the .word directive.
llvm-svn: 81461
from MCAsmLexer.h in preparation of supporting other targets. Changed the
X86AsmParser code to reflect this by removing AsmLexer::LexPercent and looking
for AsmToken::Percent when parsing in places that used AsmToken::Register.
Then changed X86ATTAsmParser::ParseRegister to parse out registers as an
AsmToken::Percent followed by an AsmToken::Identifier.
llvm-svn: 80929
specific printer (this only works on x86, for now).
- This makes it possible to do some correctness checking of the parsing and
matching, since we can compare the results of 'as' on the original input, to
those of 'as' on the output from llvm-mc.
- In theory, we could now have an easy ATT -> Intel syntax converter. :)
llvm-svn: 78986
- This doesn't actually improve the algorithm (its still linear), but the
generated (match) code is now fairly compact and table driven. Still need a
generic string matcher.
- The table still needs to be compressed, this is quite simple to do and should
shrink it to under 16k.
- This also simplifies and restructures the code to make the match classes more
explicit, in anticipation of resolving ambiguities.
llvm-svn: 78461
- Still not very sane, but a least its not 60k lines on X86. :)
- In terms of correctness, currently some things are hard wired for X86, and we
still don't properly resolve ambiguities (this is ignoring the instructions
we don't even match due to funny .td stuff or other corner cases).
The high level changes:
1. Represent tokens which are significant for matching explicitly as separate
operands. This uniformly handles not only the instruction mnemonic, but
also 'signficiant' syntax like the '*' in "call * ...".
2. Separate the matching of operands to an instruction from the construction of
the MCInst. In theory this can be done during matching, but since the number
of variations is small I think it makes sense to decompose the problems.
3. Improved a few of the mechanisms to at least successfully flatten / tokenize
the assembly strings for PowerPC and ARM.
4. The comment at the top of AsmMatcherEmitter.cpp explains the approach I'm
moving towards for handling ambiguous instructions. The high-bit is to infer
a partial ordering of the operand classes (and force the user to specify one
if we can't) and use that to resolve ambiguities.
llvm-svn: 78378
- Operands which are just a label should be parsed as immediates, not memory
operands (from the assembler perspective).
- Match a few more flavors of immediates.
- Distinguish match functions for memory operands which don't take a segment
register.
- We match the .s for "hello world" now!
llvm-svn: 77745
- This is "experimental" code, I am feeling my way around and working out the
best way to do things (and learning tblgen in the process). Comments welcome,
but keep in mind this stuff will change radically.
- This is enough to match "subb" and friends, but not much else. The next step is to
automatically generate the matchers for individual operands.
llvm-svn: 77657