As in SystemZ backend, correctly propagate node ids when inserting new
unselected nodes into the DAG during instruction Seleciton for X86
target.
Fixes PR36865.
Reviewers: jyknight, craig.topper
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D44797
llvm-svn: 328233
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
The pipeliner needs to remove instructions from the SlotIndexes
structure when they are deleted. Otherwise, the SlotIndexes map
has stale data, and an assert will occur when adding new
instructions.
This patch also changes the pipeliner to make the back-edge of
a loop carried dependence 1 cycle. The 1 cycle latency is added
to the anti-dependence that represents the back-edge. This
changes eliminates a couple of hacks added to the pipeliner to
handle the latency of the back-edge. It is needed to correctly
pipeline the test case for the sub-register elimination pass.
llvm-svn: 328113
Summary:
When building the selection DAG we sometimes need to postpone
the handling of a dbg.value until the value it should refer to
is created. This is done by using the DanglingDebugInfoMap.
In the past this map has been limited to hold one dangling
dbg.value per value. This patch removes that restriction.
Reviewers: aprantl, rnk, probinson, vsk
Reviewed By: aprantl
Subscribers: Ka-Ka, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44610
llvm-svn: 328084
I'm not entirely sure these hacks are still needed. If you remove the hacks completely, the name of the library call that gets generated doesn't match the grep the test previously had. So the test wasn't really checking anything.
If the hack is still needed it belongs in PPC specific code. I believe the FP_TO_SINT code here is the only place in the tree where a FP_ROUND_INREG node is created today. And I don't think its even being used correctly because the legalization returned a BUILD_PAIR with the same value twice. That doesn't seem right to me. By moving the code entirely to PPC we can avoid creating the FP_ROUND_INREG at all.
I replaced the grep in the existing test with full checks generated by hacking update_llc_test_check.py to support ppc32 just long enough to generate it.
Differential Revision: https://reviews.llvm.org/D44061
llvm-svn: 328017
Summary:
Currently X-Ray Instrumentation pass has a dependency on MachineLoopInfo
(and thus on MachineDominatorTree as well) and we have to compute them
even if X-Ray is not used. This patch changes it to a lazy computation
to save compile time by avoiding these redundant computations.
Reviewers: dberris, kubamracek
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D44666
llvm-svn: 327999
Summary:
Added a flag -no-dwarf-pub-sections, which allows to disable
emission of DWARF public sections.
Reviewers: probinson, echristo
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D44385
llvm-svn: 327994
Summary:
Made PHI node simplifiations more robust in several ways:
- Minor refactoring to let the SimplificationTracker own the
sets with new PHI/Select nodes that are introduced. This is
maybe not mapping to the original intention with the
SimplificationTracker, but IMHO it encapsulates the logic behind
those sets a little bit better.
- MatchPhiNode can sometimes populate the Matched set with
several entries, where it maps one PHI node to different candidates
for replacement. The Matched set is changed into a SmallSetVector
to make sure we get a deterministic iteration when doing
the replacements.
- As described above we may get several different replacements
for a single PHI node. The loop in MatchPhiSet that is doing
the replacements could end up calling eraseFromParent several
times for the same PHI node, resulting in segmentation faults.
This problem was supposed to be fixed in rL327250, but due to
the non-determinism(?) it only appeared to be fixed (I still
got crashes sometime when turning on/off -print-after-all etc
to get different iteration order in the DenseSets).
With this patch we follow the deterministic ordering in the
Matched set when replacing the PHI nodes. If we find a new
replacement for an already replaced PHI node we replace the
new replacement by the old replacement instead. This is quite
similar to what happened in the rl327250 patch, but here we
also recursively verify that the old replacement hasn't been
replaced already.
- It was really hard to track down the fault described above
(segementation fault due to doing eraseFromParent multiple
times for the same instruction). The fault was intermittent and
small changes in the code, or simply turning on -print-after-all
etc could make the problem go away. This was basically due to
the iteration over PhiNodesToMatch in MatchPhiSet no being
deterministic. Therefore I've changed the data structure for
the SimplificationTracker::AllPhiNodes into an SmallSetVector.
This gives a deterministic behavior.
Reviewers: skatkov, john.brawn
Reviewed By: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44571
llvm-svn: 327961
When scanning the function for CSRs uses and defs, also check if
the basic block are landing pads.
Consider that landing pads needs the CSRs to be properly set.
That way we force the prologue/epilogue to always be pushed out
of the problematic "throw" region. The "throw" region is
problematic because the jumps are not properly modeled.
Fixes PR36513
llvm-svn: 327942
Summary:
DbgValue nodes were not transferred when integer DAG nodes were promoted. For example, if an i32 add node was promoted to an i64 add node by DAGTypeLegalizer::PromoteIntegerResult(), its DbgValue node was not transferred to the new node. The simple fix is to update SetPromotedInteger() to transfer DbgValues.
Add AArch64/dbg-value-i8.ll to test this change and fix ARM/debug-info-d16-reg.ll which had the wrong DILocalVariable nodes with arg numbers even though they are not for function parameters.
Patch by Se Jong Oh!
Reviewers: vsk, JDevlieghere, aprantl
Reviewed By: JDevlieghere
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44546
llvm-svn: 327919
Summary:
This patch prevents DBG_VALUE instructions from influencing
LivePhysRegs::stepBackwards and stepForwards. In at least one case,
specifically branch folding, the stepBackwards logic was having an
influence on code generation. The result was that certain code
compiled with '-g -O2' would differ from that compiled with '-O2'
alone. It seems that the original logic, accounting for DBG_VALUE,
was influencing the placement of an IMPLICIT_DEF which had a later
impact on how blocks were processed in branch folding.
Reviewers: kparzysz, MatzeB
Reviewed By: kparzysz
Subscribers: bjope, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D43850
llvm-svn: 327862
This patch adds functions to allow MachineLICM to hoist invariant stores.
Currently, MachineLICM does not hoist any store instructions, however
when storing the same value to a constant spot on the stack, the store
instruction should be considered invariant and be hoisted. The function
isInvariantStore iterates each operand of the store instruction and checks
that each register operand satisfies isCallerPreservedPhysReg. The store
may be fed by a copy, which is hoisted by isCopyFeedingInvariantStore.
This patch also adds the PowerPC changes needed to consider the stack
register as caller preserved.
Differential Revision: https://reviews.llvm.org/D40196
llvm-svn: 327856
Now that almost all functionality of Apple's dsymutil has been
upstreamed, the open source variant can be used as a drop in
replacement. Hence we feel it's no longer necessary to have the llvm
prefix.
Differential revision: https://reviews.llvm.org/D44527
llvm-svn: 327790
X86 Supports Indirect Branch Tracking (IBT) as part of Control-Flow Enforcement Technology (CET).
IBT instruments ENDBR instructions used to specify valid targets of indirect call / jmp.
The `nocf_check` attribute has two roles in the context of X86 IBT technology:
1. Appertains to a function - do not add ENDBR instruction at the beginning of the function.
2. Appertains to a function pointer - do not track the target function of this pointer by adding nocf_check prefix to the indirect-call instruction.
This patch implements `nocf_check` context for Indirect Branch Tracking.
It also auto generates `nocf_check` prefixes before indirect branchs to jump tables that are guarded by range checks.
Differential Revision: https://reviews.llvm.org/D41879
llvm-svn: 327767
The BITCAST handling in computeKnownBits() previously only worked for little
endian.
This patch reverses the iteration over elements for a big endian target which
allows this to work in this case also.
SystemZ test case.
Review: Eli Friedman
https://reviews.llvm.org/D44249
llvm-svn: 327764
Previously if getSetccResultType returned an illegal type we just fell back to using the default promoted type. This appears to have been to handle the case where for vectors getSetccResultType returns the input type, but the input type itself isn't legal and will need to be promoted. Without the legality check we would never reach a legal type.
But just picking the promoted type to be the setcc type can create strange setccs where the result type is 128 bits and the operand type is 256 bits. If for example the result type was promoted to v8i16 from v8i1, but the input type was promoted from v8i23 to v8i32. We currently handle this with custom lowering code in X86.
This legality check also caused us reject the getSetccResultType when the input type needed to be widened or split. Even though that result wouldn't have caused legalization to get stuck.
This patch tries to fix this by detecting the getSetccResultType needs to be promoted. If its input type also needs to be promoted we'll try a ask for a new setcc result type based on its eventual promoted value. Otherwise we fall back to default type to promote to.
For any other illegal values we might get back from the initial call to getSetccResultType we just keep and allow it to be re-legalized later via splitting or widening or scalarizing.
llvm-svn: 327683
We were unnecessarily copying a bunch of these FunctionInfo objects
around when rehashing the DenseMap.
Furthermore, r327620 introduced pointers referring to objects owned by
FunctionInfo, and the default copy ctor did the wrong thing in this
case, leading to use-after-free when the DenseMap gets rehashed.
I will rebase r327620 on this next and recommit it.
llvm-svn: 327665
This patch sorts local variables by lexical scope and emits them inside
an appropriate S_BLOCK32 CodeView symbol.
Differential Revision: https://reviews.llvm.org/D42926
llvm-svn: 327620
Summary:
Local values are constants, global addresses, and stack addresses that
can't be folded into the instruction that uses them. For example, when
storing the address of a global variable into memory, we need to
materialize that address into a register.
FastISel doesn't want to materialize any given local value more than
once, so it generates all local value materialization code at
EmitStartPt, which always dominates the current insertion point. This
allows it to maintain a map of local value registers, and it knows that
the local value area will always dominate the current insertion point.
The downside is that local value instructions are always emitted without
a source location. This is done to prevent jumpy line tables, but it
means that the local value area will be considered part of the previous
statement. Consider this C code:
call1(); // line 1
++global; // line 2
++global; // line 3
call2(&global, &local); // line 4
Today we end up with assembly and line tables like this:
.loc 1 1
callq call1
leaq global(%rip), %rdi
leaq local(%rsp), %rsi
.loc 1 2
addq $1, global(%rip)
.loc 1 3
addq $1, global(%rip)
.loc 1 4
callq call2
The LEA instructions in the local value area have no source location and
are treated as being on line 1. Stepping through the code in a debugger
and correlating it with the assembly won't make much sense, because
these materializations are only required for line 4.
This is actually problematic for the VS debugger "set next statement"
feature, which effectively assumes that there are no registers live
across statement boundaries. By sinking the local value code into the
statement and fixing up the source location, we can make that feature
work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and
https://crbug.com/793819.
This change is obviously not enough to make this feature work reliably
in all cases, but I felt that it was worth doing anyway because it
usually generates smaller, more comprehensible -O0 code. I measured a
0.12% regression in code generation time with LLC on the sqlite3
amalgamation, so I think this is worth doing.
There are some special cases worth calling out in the commit message:
1. local values materialized for phis
2. local values used by no-op casts
3. dead local value code
Local values can be materialized for phis, and this does not show up as
a vreg use in MachineRegisterInfo. In this case, if there are no other
uses, this patch sinks the value to the first terminator, EH label, or
the end of the BB if nothing else exists.
Local values may also be used by no-op casts, which adds the register to
the RegFixups table. Without reversing the RegFixups map direction, we
don't have enough information to sink these instructions.
Lastly, if the local value register has no other uses, we can delete it.
This comes up when fastisel tries two instruction selection approaches
and the first materializes the value but fails and the second succeeds
without using the local value.
Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo
Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43093
llvm-svn: 327581
Get rid of the "; mem:" suffix and use the one we use in MIR: ":: (load 2)".
rdar://38163529
Differential Revision: https://reviews.llvm.org/D42377
llvm-svn: 327580
I had to modify the bswap recognition to allow unshrunk masks to make this work.
Fixes PR36689.
Differential Revision: https://reviews.llvm.org/D44442
llvm-svn: 327530
swifterror llvm values model the swifterror register as memory at the
LLVM IR level. ISel will perform adhoc mem-to-reg on them. swifterror
values are constraint in how they can be used. Spilling them to memory
is not allowed.
SjLjEHPrepare tried to lower swifterror values to memory which is
unecessary since the back-end will spill and reload the register as
neccessary (as long as clobbering calls are marked as such which is the
case here) and further leads to invalid IR because swifterror values
can't be stored to memory.
rdar://38164004
llvm-svn: 327521
I don't know how to expose this in a test. There are ARM / AArch64
sched classes that include zero latency instructions, but I'm not
seeing sched info printed for those targets. X86 will almost
certainly have these soon (see PR36671), but no model has
'let Latency = 0' currently.
llvm-svn: 327518
This could end up inititialized if someone called the function with a
null AsmPrinter. Right now this only happens in DIEHash unit tests,
presumably because it was hard to create an AsmPrinter in the context of
unit tests. This only worked before r327486 because those tests did not
use any dwarf forms whose size actually depended on the dwarf version
(otherwise, they would have crashed due to null dereference).
I fix the uninitialized error, by explicitly initializing FormParams to
an invalid value, which will cause getFixedFormByteSize to return None
if called with a form with version-dependent size. A more principled
solution might be to fix the DIEHash tests to always pass in a valid
AsmPrinter.
llvm-svn: 327498
Summary:
This patch replaces the two switches which are deducing the size of
various forms with a single implementation. I have put the new
implementation into BinaryFormat, to avoid introducing dependencies
between the two independent libraries (DebugInfo and CodeGen) that need
this functionality.
Reviewers: aprantl, JDevlieghere, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44418
llvm-svn: 327486
BUILD_VECTORs aren't themselves legalized until LegalizeDAG so we should still be able to create an "illegal" one before that. This helps combine with BUILD_VECTORS that are introduced during LegalizeVectorOps due to unrolling.
llvm-svn: 327446
Nothing prevents us from having both frame-setup and frame-destroy on
the same instruction.
When merging:
* frame-setup OPCODE1
* frame-destroy OPCODE2
into
* frame-setup frame-destroy OPCODE3
we want to be able to print and parse both flags.
llvm-svn: 327442
Under some circumstances the divrems won't have been combined together before getting to this code.
So replace the assertion with a if() guard to not expand to X-((X/C)*C) to give the other combine chance to happen.
Reduced from OSS-Fuzz #6883https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=6883
llvm-svn: 327424
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SelectionDAGBuilder to cease using the old getAlignment() API of MemoryIntrinsic in favour of getting
source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816, rL327398 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 327421
The goal is to make the reciprocal throughput computation accessible through the
MCSchedModel interface. This is particularly important for llvm-mca because it
can only query the MCSchedModel interface.
No functional change intended.
Differential Revision: https://reviews.llvm.org/D44392
llvm-svn: 327420
The goal is to make the latency information accessible through the MCSchedModel
interface. This is particularly important for tools like llvm-mca that only have
access to the MCSchedModel API.
This partially fixes PR36676.
No functional change intended.
Differential Revision: https://reviews.llvm.org/D44383
llvm-svn: 327406
Codeview references to unnamed structs and unions are expected to refer to the
complete type definition instead of a forward reference so Visual Studio can
resolve the type properly.
Differential Revision: https://reviews.llvm.org/D32498
llvm-svn: 327397
splitMergedValStore will split a store into two if target prefers this, or if
-force-split-store is passed.
This patch adds the missing handling for endianness in this function along
with a test case.
Review: Eli Friedman
https://reviews.llvm.org/D44396
llvm-svn: 327375
Summary:
1) Make sure to discard dangling debug info if the variable (or
variable fragment) is mapped to something new before we had a
chance to resolve the dangling debug info.
2) When resolving debug info, make sure to bump the associated
SDNodeOrder to ensure that the DBG_VALUE is emitted after the
instruction that defines the value used in the DBG_VALUE.
This will avoid a debug-use before def scenario as seen in
https://bugs.llvm.org/show_bug.cgi?id=36417.
The new test case, test/DebugInfo/X86/sdag-dangling-dbgvalue.ll,
show some other limitations in how dangling debug info is
handled in the SelectionDAG. Since we currently only support
having one dangling dbg.value per Value, we will end up dropping
debug info when there are more than one variable that is described
by the same "dangling value".
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: aprantl, eraman, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44369
llvm-svn: 327303
When we replace the Phi we created with matched ones it is possible that
there are two identical phi nodes in IR. And matcher is smart enough to find that
new created phi matches both of them. So we try to replace our phi node with
matched ones twice and what is bad we delete our phi node twice causing a crash.
As soon as we found that we have two identical Phi nodes it makes sense to do
a clean-up and replace one phi node by other one.
The patch implements it.
Reviewers: john.brawn, reames
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43758
llvm-svn: 327250
The intent of revision r300311 was to add a check for invalid scheduling class
descriptors. However, it ended up adding a redundant call in a basic block that
should not be reachable.
llvm-svn: 327231
r327171 "Improve Dependency analysis when doing multi-node Instruction Selection"
r328170 "[DAG] Enforce stricter NodeId invariant during Instruction selection"
Reverting patch as NodeId invariant change is causing pathological
increases in compile time on PPC
llvm-svn: 327197
These instructions have 3 operands that can be commuted. The first commute we find may not be the best. So we should keep searching if we performed an aggressive commute. There may still be an operand that is killed or a physical register constraint that might be better.
Differential Revision: https://reviews.llvm.org/D44324
llvm-svn: 327188
Relanding after fixing NodeId Invariant.
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 327171
Instruction Selection makes use of the topological ordering of nodes
by node id (a node's operands have smaller node id than it) when doing
cycle detection. During selection we may violate this property as a
selection of multiple nodes may induce a use dependence (and thus a
node id restriction) between two unrelated nodes. If a selected node
has an unselected successor this may allow us to miss a cycle in
detection an invalid selection.
This patch fixes this by marking all unselected successors of a
selected node have negated node id. We avoid pruning on such negative
ids but still can reconstruct the original id for pruning.
In-tree targets have been updated to replace DAG-level replacements
with ISel-level ones which enforce this property.
This preemptively fixes PR36312 before triggering commit r324359 relands
Reviewers: craig.topper, bogner, jyknight
Subscribers: arsenm, nhaehnle, javed.absar, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43198
llvm-svn: 327170
The retpoline mitigation for variant 2 of CVE-2017-5715 inhibits the
branch predictor, and as a result it can lead to a measurable loss of
performance. We can reduce the performance impact of retpolined virtual
calls by replacing them with a special construct known as a branch
funnel, which is an instruction sequence that implements virtual calls
to a set of known targets using a binary tree of direct branches. This
allows the processor to speculately execute valid implementations of the
virtual function without allowing for speculative execution of of calls
to arbitrary addresses.
This patch extends the whole-program devirtualization pass to replace
certain virtual calls with calls to branch funnels, which are
represented using a new llvm.icall.jumptable intrinsic. It also extends
the LowerTypeTests pass to recognize the new intrinsic, generate code
for the branch funnels (x86_64 only for now) and lay out virtual tables
as required for each branch funnel.
The implementation supports full LTO as well as ThinLTO, and extends the
ThinLTO summary format used for whole-program devirtualization to
support branch funnels.
For more details see RFC:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120672.html
Differential Revision: https://reviews.llvm.org/D42453
llvm-svn: 327163
Summary: We create a ConstantDataSequential (ConstantDataArray or ConstantDataVector) to avoid creating a Constant for each element in an array of constants. But them in AsmPrinter, we do create a ConstantFP for each element in the ConstantDataSequential. This triggers excessive memory use when generating large global FP constants.
Reviewers: bogner, lhames, t.p.northover
Subscribers: jlebar, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D44277
llvm-svn: 327161
Added helpers to build G_FCONSTANT, along with matching ConstantFP and
unit tests for the same.
Sample usage.
auto MIB = Builder.buildFConstant(s32, 0.5); // Build IEEESingle
For Matching the above
const ConstantFP* Tmp;
mi_match(DstReg, MRI, m_GFCst(Tmp));
https://reviews.llvm.org/D44128
reviewed by: volkan
llvm-svn: 327152
The code to match and produce more x86 vector blends was enabled for all
architectures even though the transform may pessimize the code for other
architectures that do not provide a vector blend instruction.
Added an aarch64 testcase to check that a VZIP instruction is generated instead
of byte movs.
Differential Revision: https://reviews.llvm.org/D44118
llvm-svn: 327132
This patch is a fix for PR36642.
While legalizing long vector types, make sure the smaller types get the
flags of the wider type.
bugzilla link: https://bugs.llvm.org/show_bug.cgi?id=36642
Change-Id: I0c2829639f094c862c10a6b51b342d4c2563e1fa
llvm-svn: 327079
Summary:
This patch adds the DW_AT_byte_size dwarf attribute to vectors.
This fixes PR21924
LLVM will round a vector up to the next alignable address, which can result in
the vector's representation in the object file being larger than what the
debugger will calculate via NumberOfElements * ElementSize. In such a case calling sizeof(MyVec) in the source will result in a different value than what a debugger might present. This situation can occur because LLVM permits non-power of two 'vector_size' attributes.
Reviewers: echristo, dexonsmith, aprantl
Reviewed By: aprantl
Subscribers: probinson, aprantl, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44048
llvm-svn: 327072
Summary:
A desired property of the node order in Swing Modulo Scheduling is
that for nodes outside circuits the following holds: none of them is
scheduled after both a successor and a predecessor. We call
node orders that meet this property valid.
Although invalid node orders do not lead to the generation of incorrect
code, they can cause the pipeliner not being able to find a pipelined schedule
for arbitrary II. The reason is that after scheduling the successor and the
predecessor of a node, no room may be left to schedule the node itself.
For data flow graphs with 0-latency edges, the node ordering algorithm
of Swing Modulo Scheduling can generate such undesired invalid node orders.
This patch fixes that.
In the remainder of this commit message, I will give an example
demonstrating the issue, explain the fix, and explain how the the fix is tested.
Consider, as an example, the following data flow graph with all
edge latencies 0 and all edges pointing downward.
```
n0
/ \
n1 n3
\ /
n2
|
n4
```
Consider the implemented node order algorithm in top-down mode. In that mode,
the algorithm orders the nodes based on greatest Height and in case of equal
Height on lowest Movability. Finally, in case of equal Height and
Movability, given two nodes with an edge between them, the algorithm prefers
the source-node.
In the graph, for every node, the Height and Movability are equal to 0.
As will be explained below, the algorithm can generate the order n0, n1, n2, n3, n4.
So, node n3 is scheduled after its predecessor n0 and after its successor n2.
The reason that the algorithm can put node n2 in the order before node n3,
even though they have an edge between them in which node n3 is the source,
is the following: Suppose the algorithm has constructed the partial node
order n0, n1. Then, the nodes left to be ordered are nodes n2, n3, and n4. Suppose
that the while-loop in the implemented algorithm considers the nodes in
the order n4, n3, n2. The algorithm will start with node n4, and look for
more preferable nodes. First, node n4 will be compared with node n3. As the nodes
have equal Height and Movability and have no edge between them, the algorithm
will stick with node n4. Then node n4 is compared with node n2. Again the
Height and Movability are equal. But, this time, there is an edge between
the two nodes, and the algorithm will prefer the source node n2.
As there are no nodes left to compare, the algorithm will add node n2 to
the node order, yielding the partial node order n0, n1, n2. In this way node n2
arrives in the node-order before node n3.
To solve this, this patch introduces the ZeroLatencyHeight (ZLH) property
for nodes. It is defined as the maximum unweighted length of a path from the
given node to an arbitrary node in which each edge has latency 0.
So, ZLH(n0)=3, ZLH(n1)=ZLH(n3)=2, ZLH(n2)=1, and ZLH(n4)=0
In this patch, the preference for a greater ZeroLatencyHeight
is added in the top-down mode of the node ordering algorithm, after the
preference for a greater Height, and before the preference for a
lower Movability.
Therefore, the two allowed node-orders are n0, n1, n3, n2, n4 and n0, n3, n1, n2, n4.
Both of them are valid node orders.
In the same way, the bottom-up mode of the node ordering algorithm is adapted
by introducing the ZeroLatencyDepth property for nodes.
The patch is tested by adding extra checks to the following existing
lit-tests:
test/CodeGen/Hexagon/SUnit-boundary-prob.ll
test/CodeGen/Hexagon/frame-offset-overflow.ll
test/CodeGen/Hexagon/vect/vect-shuffle.ll
Before this patch, the pipeliner failed to pipeline the loops in these tests
due to invalid node-orders. After the patch, the pipeliner successfully
pipelines all these loops.
Reviewers: bcahoon
Reviewed By: bcahoon
Subscribers: Ayal, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D43620
llvm-svn: 326925
Fixes the bug found by asan. Also XFAIL the new test for Darwin,
which is stuck on DWARF v2, and fix up other tests so they stop
failing on Windows.
llvm-svn: 326839
Summary:
- Emit UdtSourceLine information for enums to match MSVC
- Add a method to add UDTSrcLine and call it for all Class/Struct/Union/Enum
- Update test cases to verify the changes
Reviewers: zturner, llvm-commits, rnk
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D44116
llvm-svn: 326824
I obviously messed up arguments to MachineOperand::CreateReg
in rL326769. This should make it work as intended.
Thanks to RKSimon for spotting this.
llvm-svn: 326780
Summary:
This is a workaround for pr36417
https://bugs.llvm.org/show_bug.cgi?id=36417
LiveDebugVariables will now verify that the DBG_VALUE instructions
are sane (prior to register allocation) by asking LIS if a virtual
register used in the DBG_VALUE is live (or dead def) in the slot
index before the DBG_VALUE. If it isn't sane the DBG_VALUE is
discarded.
One pass that was identified as introducing non-sane DBG_VALUE
instructtons, when analysing pr36417, was the DAG->DAG Instruction
Selection. It sometimes inserts DBG_VALUE instructions referring to
a virtual register that is defined later in the same basic block.
So it is a use before def kind of problem. The DBG_VALUE is
typically inserted in the beginning of a basic block when this
happens. The problem can be seen in the test case
test/DebugInfo/X86/dbg-value-inlined-parameter.ll
Reviewers: aprantl, rnk, probinson
Reviewed By: aprantl
Subscribers: vsk, davide, alexcrichton, Ka-Ka, eraman, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43956
llvm-svn: 326769
DWARF v5 specifies that the root file (also given in the DW_AT_name
attribute of the compilation unit DIE) should be emitted explicitly to
the line table's list of files. This makes the line table more
independent of the .debug_info section.
Differential Revision: https://reviews.llvm.org/D44054
llvm-svn: 326758
Summary:
Fabs is a common floating-point operation, especially for some expansions. This patch adds
a new generic opcode for llvm.fabs.* intrinsic in order to avoid building/matching this intrinsic.
Reviewers: qcolombet, aditya_nandakumar, dsanders, rovka
Reviewed By: aditya_nandakumar
Subscribers: kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D43864
llvm-svn: 326749
This is a NFC simple patch that changes the DEBUG dumping in the
MachineScheduler so that the dumping of the built SUnits is done before the
SchedImpl->initialize() is called.
This is better on SystemZ, since it has a strategy that does some dumping at
the start of the region, and it is not possible to easily read it if it is
output above a long list of SU.
Review: Javed Absar
https://reviews.llvm.org/D44089
llvm-svn: 326716
Loading a constant into a k-register in AVX512 requires a bitcast from a scalar constant. In the test case here we have a k-register store that gets split into multiple parts of KNL. MergeConsecutiveStores sees each of these pieces as a consecutive store and looks through the bitcast to find the underly scalar constant. But when we went to create the combined store we didn't look through the same bitcast.
llvm-svn: 326677
X86 considers v1i1 a legal type under AVX512 and as such a truncate from a v1iX type to v1i1 can be turned into a scalar truncate plus a conversion to v1i1. We would much prefer a v1i1 SCALAR_TO_VECTOR over a one element BUILD_VECTOR.
During lowering we were detecting the v1i1 BUILD_VECTOR as a splat BUILD_VECTOR like we try to do for v2i1/v4i1/etc. In this case we create (select i1 splat_elt, v1i1 all-ones, v1i1 all-zeroes). That goes through some more legalization and we end up with a CMOV choosing between 0 and 1 in scalar and a scalar_to_vector.
Arguably we could detect the v1i1 BUILD_VECTOR and do this better in X86 target code. But just using a SCALAR_TO_VECTOR in legalization is much easier.
llvm-svn: 326637
The fast/linear DAG scheduler doesn't lower DBG_VALUEs except for
function entry nodes.
Patch by Joshua Cranmer!
Differential Revision: https://reviews.llvm.org/D43028
llvm-svn: 326631
This patch adds support for detecting outer loops with irreducible control
flow in LV. Current detection uses SCCs and only works for innermost loops.
This patch adds a utility function that works on any CFG, given its RPO
traversal and its LoopInfoBase. This function is a generalization
of isIrreducibleCFG from lib/CodeGen/ShrinkWrap.cpp. The code in
lib/CodeGen/ShrinkWrap.cpp is also updated to use the new generic utility
function.
Patch by Diego Caballero <diego.caballero@intel.com>
Differential Revision: https://reviews.llvm.org/D40874
llvm-svn: 326568
Masking first, prevents the extend from being combine with loads. Its also interfering with some vXi1 extraction code.
Differential Revision: https://reviews.llvm.org/D42679
llvm-svn: 326500
This supports things like
(setcc ugt X, 0) -> (setcc ne X, 0)
I've restricted to only make changes to vectors before legalize ops because I doubt all targets have accurate condition code legality information for vectors given how little we did before.
Differential Revision: https://reviews.llvm.org/D42948
llvm-svn: 326495
Currently it's impossible to test InstructionSelect pass with MIR which
is considered illegal by the Legalizer in Assert builds. In early stages
of porting an existing backend from SelectionDAG ISel to GlobalISel,
however, we would have very basic CallLowering, Legalizer, and
RegBankSelect implementations, but rather functional Instruction Select
with quite a few patterns selectable due to the semi-automatic porting
process borrowing them from SelectionDAG ISel.
As we are trying to define legality as a property of being selectable by
the instruction selector, it would be nice to be able to easily check
what the selector can do in its current state w/o the legality check
provided by the Legalizer getting in the way.
It also seems beneficial to have a regression testing set up that would
not allow the selector to silently regress in its support of the MIR not
supported yet by the previous passes in the GlobalISel pipeline.
This commit adds -disable-gisel-legality-check command line option to
llc that disables those legality checks in RegBankSelect and
InstructionSelect passes.
It also adds quite a few MIR test cases for AArch64's Instruction
Selector. Every one of them would fail on the legality check at the
moment, but will select just fine if the check is disabled. Every test
MachineFunction is intended to exercise a specific selection rule and
that rule only, encoded in the MachineFunction's name by the rule's
number, ID, and index of its GIM_Try opcode in TableGen'erated
MatchTable (-optimize-match-table=false).
Reviewers: ab, dsanders, qcolombet, rovka
Reviewed By: bogner
Subscribers: kristof.beyls, volkan, aditya_nandakumar, aemerson,
rengolin, t.p.northover, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D42886
llvm-svn: 326396
FailedISel MachineFunction property is part of the CodeGen pipeline
state as much as every other property, notably, Legalized,
RegBankSelected, and Selected. Let's make that part of the state also
serializable / de-serializable, so if GlobalISel aborts on some of the
functions of a large module, but not the others, it could be easily seen
and the state of the pipeline could be maintained through llc's
invocations with -stop-after / -start-after.
To make MIR printable and generally to not to break it too much too
soon, this patch also defers cleaning up the vreg -> LLT map until
ResetMachineFunctionPass.
To make MIR with FailedISel: true also machine verifiable, machine
verifier is changed so it treats a MIR-module as non-regbankselected and
non-selected if there is FailedISel property set.
Reviewers: qcolombet, ab
Reviewed By: dsanders
Subscribers: javed.absar, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42877
llvm-svn: 326343
Emulated TLS is enabled by llc flag -emulated-tls,
which is passed by clang driver.
When llc is called explicitly or from other drivers like LTO,
missing -emulated-tls flag would generate wrong TLS code for targets
that supports only this mode.
Now use useEmulatedTLS() instead of Options.EmulatedTLS to decide whether
emulated TLS code should be generated.
Unit tests are modified to run with and without the -emulated-tls flag.
Differential Revision: https://reviews.llvm.org/D42999
llvm-svn: 326341
Summary:
Some targets does not support labels inside debug sections, but support
references in form `section +|- offset`. Patch adds initial support
for this. Also, this patch disables emission of all additional debug
sections that may have labels inside of it (like pub sections and
string tables).
Reviewers: probinson, echristo
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D43627
llvm-svn: 326328
Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
Absence of memory operands is treated as "aliasing everything", so
dropping them is sufficient.
Recommit r326256 with a fixed testcase.
llvm-svn: 326262
Qualifiers on a pointer or reference type may apply to either the
pointee or the pointer itself. Consider 'const char *' and 'char *
const'. In the first example, the pointee data may not be modified
without casts, and in the second example, the pointer may not be updated
to point to new data.
In the general case, qualifiers are applied to types with LF_MODIFIER
records, which support the usual const and volatile qualifiers as well
as the __unaligned extension qualifier.
However, LF_POINTER records, which are used for pointers, references,
and member pointers, have flags for qualifiers applying to the
*pointer*. In fact, this is the only way to represent the restrict
qualifier, which can only apply to pointers, and cannot qualify regular
data types.
This patch causes LLVM to correctly fold 'const' and 'volatile' pointer
qualifiers into the pointer record, as well as adding support for
'__restrict' qualifiers in the same place.
Based on a patch from Aaron Smith
Differential Revision: https://reviews.llvm.org/D43060
llvm-svn: 326260
When attempting to compile the following Objective-C++ code with
CodeView debug info:
void (^b)(void) = []() {};
The generated debug metadata contains a structure like the following:
!43 = !DICompositeType(tag: DW_TAG_structure_type, name: "__block_literal_1", scope: !6, file: !6, line: 1, size: 168, elements: !44)
!44 = !{!45, !46, !47, !48, !49, !52}
...
!52 = !DIDerivedType(tag: DW_TAG_member, scope: !6, file: !6, line: 1, baseType: !53, size: 8, offset: 160, flags: DIFlagPublic)
!53 = !DIDerivedType(tag: DW_TAG_const_type, baseType: !54)
!54 = !DICompositeType(tag: DW_TAG_class_type, file: !6, line: 1, flags: DIFlagFwdDecl)
Note that the member node (!52) is unnamed, but rather than pointing to
a DICompositeType directly, it points to a DIDerivedType with tag
DW_TAG_const_type, which then points to the DICompositeType. However,
the CodeView assembly printer currently assumes that the base type for
an unnamed member will always be a DICompositeType, and attempts to
perform that cast, which triggers an assertion failure, since in this
case the base type is actually a DIDerivedType, not a DICompositeType
(and we would have to get the base type of the DIDerivedType to reach
the DICompositeType). I think the debug metadata being generated by the
frontend is correct (or at least plausible), and the CodeView printer
needs to handle this case.
This patch teaches the CodeView printer to unwrap any qualifier types.
The qualifiers are just dropped for now. Ideally, they would be applied
to the added indirect members instead, but this occurs infrequently
enough that adding the logic to handle the qualifiers correctly isn't
worth it for now. A FIXME is added to note this.
Additionally, Reid pointed out that the underlying assumption that an
unnamed member must be a composite type is itself incorrect and may not
hold for all frontends. Therefore, after all qualifiers have been
stripped, check if the resulting type is in fact a DICompositeType and
just return if it isn't, rather than assuming the type and crashing if
that assumption is violated.
Differential Revision: https://reviews.llvm.org/D43803
llvm-svn: 326255
Currently when abort is enabled, we get a diagnostic saying "Fallback
path used .... " and the program terminates. To actually figure out what
the reason is, we need to run again with another verbose argument
"-pass-remarks-missed=gisel". Instead, when we are going to abort,
we might as well print expensive remarks.
https://reviews.llvm.org/D43796
llvm-svn: 326215
Re-enable commit r323991 now that r325931 has been committed to make
MachineOperand::isRenamable() check more conservative w.r.t. code
changes and opt-in on a per-target basis.
llvm-svn: 326208
AVX512 used to promote v32i1 to v32i8 during legalization when BWI was disabled. So this code was added to improve legalization of v32i1 concat_vectors of v16i1 by extending the v16i1 to v16i8 to avoid scalarization.
X86 has since switched to legalizing v32i1 by splitting to v16i1 instead. This has rendered this code unnecessary and its no longer exercised.
llvm-svn: 326153
Currently we assert that only non target specific opcodes can have
missing RegisterClass constraints in the MCDesc. The backend can have
instructions with register operands but don't have RegisterClass
constraints (say using unknown_class) in which case the instruction
defining the register will constrain it.
Change the assert to only fire if a def has no regclass.
https://reviews.llvm.org/D43409
llvm-svn: 326142
In r322867, we introduced IsStandalone when printing MIR in -debug
output. The default behaviour for that was:
1) If any of MBB, MI, or MO are -debug-printed separately, don't omit any
redundant information.
2) When -debug-printing a MF entirely, don't print any redundant
information.
3) When printing MIR, don't print any redundant information.
I'd like to change 2) to:
2) When -debug-printing a MF entirely, don't omit any redundant information.
Differential Revision: https://reviews.llvm.org/D43337
llvm-svn: 326094
Summary:
In the test case, the machine scheduler moves a dead write to a subreg
up into the middle of a segment of the overall reg's live range, where
the segment had liveness only for other subregs in the reg.
handleMoveUp created an invalid live range, causing an assert a bit
later.
This commit fixes it to handle that situation. The segment is split in
two at the insertion point, and the part after the split, and any
subsequent segments up to the old position, are changed to be defined by
the moved def.
V2: Better test.
Subscribers: MatzeB, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D43478
Change-Id: Ibc42445ddca84e79ad1f616401015d22bc63832e
llvm-svn: 326087
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
Summary:
There are transformation that change setcc into other constructs, and transform that try to reconstruct a setcc from the brcond condition. Depending on what order these transform are done, the end result differs.
Most of the time, it is preferable to get a setcc as a brcond argument (and this is why brcond try to recreate the setcc in the first place) so we ensure this is done every time by also doing it at the setcc level when the only user is a brcond.
Reviewers: spatel, hfinkel, niravd, craig.topper
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D41235
llvm-svn: 325892
isCondCodeLegal internally checked Legal or Custom which is misleading. Though no targets set any cond code action to Custom today.
So I've renamed isCondCodeLegal to isCondCodeLegalOrCustom and added a real isCondCodeLegal that only checks Legal.
I've changed legalization code to use isCondCodeLegalOrCustom and left things reachable via DAG combine as isCondCodeLegal. I've also changed some places that called getCondCodeAction and compared to Legal to just use isCondCodeLegal.
I'm looking at trying to keep SETCC all the way to isel for the AVX512 integer comparisons and I suspect I'll need to make some condition codes Custom to stop DAG combine from changing things post LegalizeOps. Prior to this only Expand stopped DAG combine, but that causes LegalizeOps to try to swap operands or invert rather than calling our Custom handler.
Differential Revision: https://reviews.llvm.org/D43607
llvm-svn: 325829
This patch reverts r325440 and r325438 because it triggers an
assertion in SelectionDAGBuilder.cpp. Also having debug enabled
may unintentionally affect code-gen. The patch is reverted until
we find a better solution.
llvm-svn: 325825
This allows us to improve vector constant matching in more DAG code (backends, TargetLowering etc.).
Differential Revision: https://reviews.llvm.org/D43466
llvm-svn: 325815
Summary:
If there is no debug info for macros, do not emit labels for empty
macinfo sections.
Reviewers: probinson, echristo
Subscribers: aprantl, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43589
llvm-svn: 325803
We looked through a BITCAST, but the bitcast might be a from a scalar type rather than a vector.
I don't have a test case. I stumbled onto it while prototyping another change that isn't ready yet.
llvm-svn: 325750
Spilling may cause previously non-empty intervals (both for the spilled vreg
and others) to become empty. Moving the pruning into initializeGraph catches
these cases and fixes PR33038.
llvm-svn: 325632
This is split off from D42948 and includes just the cases that constant fold to true or false. It also includes some refactoring to keep predicate checks together.
This supports things like
(setcc uge X, 0) -> true
Differential Revision: https://reviews.llvm.org/D43489
llvm-svn: 325627
DAGCombiner and SimplifySetCC both use getPointerTy for shift amounts pre-legalization. DAGCombiner uses a single helper function to hide this. SimplifySetCC does it in multiple places.
This patch adds a defaulted parameter to getShiftAmountTy that can make it return getPointerTy for scalar types. Use this parameter to simplify the SimplifySetCC and DAGCombiner.
Additionally, there were two places in SimplifySetCC that were creating shifts using the target's preferred shift amount pre-legalization. If the target uses a narrow type and the type is illegal, this can cause SimplfiySetCC to create a shift with an amount that can't represent all possible shift values for the type. To fix this we should use pointer type there too.
Alternatively we could make getScalarShiftAmountTy for each target return a safe value for large types as proposed in D43445. And maybe we should still do that, but fixing the SimplifySetCC code keeps other targets from tripping over this in the future.
Fixes PR36250.
Differential Revision: https://reviews.llvm.org/D43449
llvm-svn: 325602
ExpandUINT_TO_FLOAT can accept vXi32 or vXi64 inputs, so we need to use a uint64_t shift to generate the 2^(BW/2) constant.
No test case unfortunately as no upstream target uses this, but its affecting a downstream target.
llvm-svn: 325578
This is the second part of recommit of r325224. The previous part was
committed in r325426, which deals with C++ memory allocation. Solution
for C memory allocation involved functions `llvm::malloc` and similar.
This was a fragile solution because it caused ambiguity errors in some
cases. In this commit the new functions have names like `llvm::safe_malloc`.
The relevant part of original comment is below, updated for new function
names.
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
In some cases memory is allocated by a call to some of C allocation
functions, malloc, calloc and realloc. They are used for interoperability
with C code, when allocated object has variable size and when it is
necessary to avoid call of constructors. In many calls the result is not
checked for null pointer. To simplify checks, new functions are defined
in the namespace 'llvm': `safe_malloc`, `safe_calloc` and `safe_realloc`.
They behave as corresponding standard functions but produce fatal error if
allocation fails. This change replaces the standard functions like 'malloc'
in the cases when the result of the allocation function is not checked
for null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statement is added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325551
If we have a clamp pattern, SMIN(SMAX(X, LO),HI) or SMAX(SMIN(X, HI),LO) then we can deduce that the number of signbits (zeros/ones) will be at least the minimum of the LO and HI constants.
ComputeKnownBits equivalent of D43338.
Differential Revision: https://reviews.llvm.org/D43463
llvm-svn: 325521
Summary:
This commit separates the abstract accelerator table data structure
from the code for writing out an on-disk representation of a specific
accelerator table format. The idea is that former (now called
AccelTable<T>) can be reused for the DWARF v5 accelerator tables
as-is, without any further customizations.
Some bits of the emission code (now living in the EmissionContext class)
can be reused for DWARF v5 as well, but the subtle differences in the
layout of various subtables mean the sharing is not always possible.
(Also, the individual emit*** functions are fairly simple so there's a
tradeoff between making a bigger general-purpose function, and two
smaller targeted functions.)
Another advantage of this setup is that more of the serialization logic
can be hidden in the .cpp file -- I have moved declarations of the
header and all the emission functions there.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: echristo, clayborg, vleschuk, llvm-commits
Differential Revision: https://reviews.llvm.org/D43285
llvm-svn: 325516
If we have a clamp pattern, SMIN(SMAX(X, LO),HI) or SMAX(SMIN(X, HI),LO) then we can deduce that the number of signbits will be at least the minimum of the LO and HI constants.
I haven't bothered with the UMIN/UMAX equivalent as (1) we don't have any current use cases and (2) I wonder if we'd be better off immediately falling back for ComputeKnownBits for UMIN/UMAX which already has optimization patterns useful for unsigned cases.
Differential Revision: https://reviews.llvm.org/D43338
llvm-svn: 325450
Summary:
https://llvm.org/PR36263 shows that when compiling at -O0 a dbg.value()
instruction (that remains from an original dbg.declare()) is dropped
by FastISel. Since FastISel selects instructions by iterating a basic
block backwards, it drops the dbg.value if one of its operands is not
yet instantiated by a previously selected instruction.
Instead of calling 'lookUpRegForValue()' we can call 'getRegForValue()'
instead that will insert a placeholder for the operand to be filled in
when continuing the instruction selection.
Reviewers: aprantl, dblaikie, probinson
Reviewed By: aprantl
Subscribers: llvm-commits, dstenb, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43386
llvm-svn: 325438
This makes sure that alloca() function calls properly probe the
stack as needed.
Differential Revision: https://reviews.llvm.org/D42356
llvm-svn: 325433
Summary:
The assert for a DISubrange's CountVarDIE to be available fails
when the dbg.value() has been optimized away for any reason.
Having the assert for that is a little heavy, so instead removing
it now in favor of not generating the 'count' expression.
Addresses http://llvm.org/PR36263 .
Reviewers: aprantl, dblaikie, probinson
Reviewed By: aprantl
Subscribers: JDevlieghere, llvm-commits, dstenb
Differential Revision: https://reviews.llvm.org/D43387
llvm-svn: 325427
This reverts commit r323991.
This commit breaks target that don't model all the register constraints
in TableGen. So far the workaround was to set the
hasExtraXXXRegAllocReq, but it proves that it doesn't cover all the
cases.
For instance, when mutating an instruction (like in the lowering of
COPYs) the isRenamable flag is not properly updated. The same problem
will happen when attaching machine operand from one instruction to
another.
Geoff Berry is working on a fix in https://reviews.llvm.org/D43042.
llvm-svn: 325421
Sadly, r324359 caused at least PR36312. There is a patch out for review
but it seems to be taking a bit and we've already had these crashers in
tree for too long. We're hitting this PR in real code now and are
blocked on shipping new compilers as a consequence so I'm reverting us
back to green.
Sorry for the churn due to the stacked changes that I had to revert. =/
llvm-svn: 325420
Based off the DemandedElts mask the and UNDEF elements returned from the SimplifyDemandedVectorElts calls to the shuffle operands, we can attempt to simplify the shuffle mask.
I had to be very conservative here as accepting post-legalized shuffle masks could cause problems for targets that legalize UNDEF mask elements back to inrange values (PowerPC), similarly combining to identity shuffle masks could cause too much UNDEF information to disappear for later combines.
llvm-svn: 325354