- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
No one was using it and Locker(pthread_mutex_t *) immediately asserts for
pthread_mutex_t's that don't come from a Mutex anyway. Rather than try to make
that work, we should maintain the Mutex abstraction and not pass around the
platform implementation...
Make Mutex::Locker::Lock take a Mutex & or a Mutex *, and remove the constructor
taking a pthread_mutex_t *. You no longer need to call Mutex::GetMutex to pass
your mutex to a Locker (you can't in fact, since I made it private.)
llvm-svn: 156221
Cleaned up the Mutex::Locker and the ReadWriteLock classes a bit.
Also cleaned up the GDBRemoteCommunication class to not have so many packet functions. Used the "NoLock" versions of send/receive packet functions when possible for a bit of performance.
llvm-svn: 154458
Work around a deadlocking issue where "SBDebugger::MemoryPressureDetected ()" is being called and is causing a deadlock. We now just try and get the lock when trying to trim down the unique modules so we don't deadlock debugger GUI programs until we can find the root cause.
llvm-svn: 154339
Each platform now knows if it can handle an architecture and a platform can be found using an architecture. Each platform can look at the arch, vendor and OS and know if it should be used or not.
llvm-svn: 153104
is not available (LLDB_DISABLE_PYTHON is defined).
Change build-swig-Python.sh to emit an empty LLDBPythonWrap.cpp file if
this build is LLDB_DISABLE_PYTHON.
Change the "Copy to Xcode.app" shell script phase in the lldb.xcodeproj
to only do this copying for Mac native builds.
llvm-svn: 151035
New public API for handling formatters: creating, deleting, modifying categories, and formatters, and managing type/formatter association.
This provides SB classes for each of the main object types involved in providing formatter support:
SBTypeCategory
SBTypeFilter
SBTypeFormat
SBTypeSummary
SBTypeSynthetic
plus, an SBTypeNameSpecifier class that is used on the public API layer to abstract the notion that formatters can be applied to plain type-names as well as to regular expressions
For naming consistency, this patch also renames a lot of formatters-related classes.
Plus, the changes in how flags are handled that started with summaries is now extended to other classes as well. A new enum (lldb::eTypeOption) is meant to support this on the public side.
The patch also adds several new calls to the formatter infrastructure that are used to implement by-index accessing and several other design changes required to accommodate the new API layer.
An architectural change is introduced in that backing objects for formatters now become writable. On the public API layer, CoW is implemented to prevent unwanted propagation of changes.
Lastly, there are some modifications in how the "default" category is constructed and managed in relation to other categories.
llvm-svn: 150558
frames might go away (the object itself, not the actual logical frame) when
we are single stepping due to the way we currently sometimes end up flushing
frames when stepping in/out/over. They later will come back to life
represented by another object yet they have the same StackID. Now when you get
a lldb::SBFrame object, it will track the frame it is initialized with until
the thread goes away or the StackID no longer exists in the stack for the
thread it was created on. It uses a weak_ptr to both the frame and thread and
also stores the StackID. These three items allow us to determine when the
stack frame object has gone away (the weak_ptr will be NULL) and allows us to
find the correct frame again. In our test suite we had such cases where we
were just getting lucky when something like this happened:
1 - stop at breakpoint
2 - get first frame in thread where we stopped
3 - run an expression that causes the program to JIT and run code
4 - run more expressions on the frame from step 2 which was very very luckily
still around inside a shared pointer, yet, not part of the current
thread (a new stack frame object had appeared with the same stack ID and
depth).
We now avoid all such issues and properly keep up to date, or we start
returning errors when the frame doesn't exist and always responds with
invalid answers.
Also fixed the UserSettingsController (not going to rewrite this just yet)
so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to
track when the master controller has already gone away and this allowed me to
pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer
needed.
llvm-svn: 149231
LLDB (python bindings) Crashing in lldb::SBDebugger::DeleteTarget(lldb::SBTarget&)
Need to check the validity of (SBTarget&)target passed to SBDebugger::DeleteTarget()
before calling target->Destroy().
llvm-svn: 147213
Added a static memory pressure function in SBDebugger:
void SBDebugger::MemoryPressureDetected ()
This can be called by applications that detect memory pressure to cause LLDB to release cached information.
llvm-svn: 146640
the thread specific data and were destroying the thread specfic data more
than once.
Also added the ability to ask a lldb::StateType if it is stopped with an
additional paramter of "must_exist" which means that the state must be a
stopped state for a process that still exists. This means that eStateExited
and eStateUnloaded will no longer return true if "must_exist" is set to true.
llvm-svn: 144875
Fixed an issues with the SBType and SBTypeMember classes:
- Fixed SBType to be able to dump itself from python
- Fixed SBType::GetNumberOfFields() to return the correct value for objective C interfaces
- Fixed SBTypeMember to be able to dump itself from python
- Fixed the SBTypeMember ability to get a field offset in bytes (the value
being returned was wrong)
- Added the SBTypeMember ability to get a field offset in bits
Cleaned up a lot of the Stream usage in the SB API files.
llvm-svn: 144493
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
- New SBSection objects that are object file sections which can be accessed
through the SBModule classes. You can get the number of sections, get a
section at index, and find a section by name.
- SBSections can contain subsections (first find "__TEXT" on darwin, then
us the resulting SBSection to find "__text" sub section).
- Set load addresses for a SBSection in the SBTarget interface
- Set the load addresses of all SBSection in a SBModule in the SBTarget interface
- Add a new module the an existing target in the SBTarget interface
- Get a SBSection from a SBAddress object
This should get us a lot closer to being able to symbolicate using LLDB through
the public API.
llvm-svn: 140437
Set the default Source File & line to main (if it can be found.) at startup. Selecting the current thread & or frame resets
the current source file & line, and "source list" as well as the breakpoint command "break set -l <NUM>" will use the
current source file.
llvm-svn: 139323
Also change the SourceInitFile to look for .lldb-<APPNAME> and source that
preferentially if it exists.
Also made the breakpoint site report its address as well as its breakpoint number
when it gets hit and can't find any the associated locations (usually because the
breakpoint got disabled or deleted programmatically between the time it was hit
and reported.)
Changed ThreadPlanCallFunction to initialize the ivar m_func in the initializers of the
constructor, rather than waiting to initialize till later on in the function.
Fixed a bug where if you make an SBError and the ask it Success, it returns false.
Fixed ValueObject::ResolveValue so that it resolves a temporary value, rather than
overwriting the one in the value object.
llvm-svn: 137536
libraries and headers exist. This can be specified using the platform select
function:
platform select --sysroot /Volumes/remote-root remote-macosx
Each platform subclass is free to interpret the sysroot as needed.
Expose the new SDK root directory through the SBDebugger class.
Fixed an issue with the GDB remote protocol where unimplemented packets were
not being handled correctly.
llvm-svn: 133231
bool SBDebugger::DeleteTarget(lldb::SBTarget &target);
which is used in the test tearDown() phase to cleanup the debugger's target list
so that it won't grow larger and larger as test cases are executed. This is also
a good opportunity to get rid of the arcane requirement that test cases exercising
the Python API must assign the process object to self.process so that it gets
shutdown gracefully. Instead, the shutdown of the process associated with each
target is now being now automatically.
Also get rid of an API from SBTarget class:
SBTarget::DeleteTargetFromList(lldb_private::TargetList *list);
llvm-svn: 133091
(or anything running in a terminal) wants. Not what a UI (Xcode) would want
where it creates a debugger per debug window. The current code had an infinite
loop after a debug session ended.
llvm-svn: 132280
command line driver, including the lldb prompt being output by
editline, the asynchronous process output & error messages, and
asynchronous messages written by target stop-hooks.
As part of this it introduces a new Stream class,
StreamAsynchronousIO. A StreamAsynchronousIO object is created with a
broadcaster, who will eventually broadcast the stream's data for a
listener to handle, and an event type indicating what type of event
the broadcaster will broadcast. When the Write method is called on a
StreamAsynchronousIO object, the data is appended to an internal
string. When the Flush method is called on a StreamAsynchronousIO
object, it broadcasts it's data string and clears the string.
Anything in lldb-core that needs to generate asynchronous output for
the end-user should use the StreamAsynchronousIO objects.
I have also added a new notification type for InputReaders, to let
them know that a asynchronous output has been written. This is to
allow the input readers to, for example, refresh their prompts and
lines, if desired. I added the case statements to all the input
readers to catch this notification, but I haven't added any code for
handling them yet (except to the IOChannel input reader).
llvm-svn: 130721
interface.
Added a quick way to set the platform though the SBDebugger interface. I will
actually an a SBPlatform support soon, but for now this will do.
ConnectionFileDescriptor can be passed a url formatted as: "fd://<fd>" where
<fd> is a file descriptor in the current process. This is handy if you have
services, deamons, or other tools that can spawn processes and give you a
file handle.
llvm-svn: 130565
$ lldb --arch i386-unknown-unknown a.out
It would then create a target with only the "i386" part due to
SBDebugger::GetDefaultArchitecture(...) truncating the arch triple due to the
way things used to be.
llvm-svn: 129731
This allows you to have a platform selected, then specify a triple using
"i386" and have the remaining triple items (vendor, os, and environment) set
automatically.
Many interpreter commands take the "--arch" option to specify an architecture
triple, so now the command options needed to be able to get to the current
platform, so the Options class now take a reference to the interpreter on
construction.
Modified the build LLVM building in the Xcode project to use the new
Xcode project level user definitions:
LLVM_BUILD_DIR - a path to the llvm build directory
LLVM_SOURCE_DIR - a path to the llvm sources for the llvm that will be used to build lldb
LLVM_CONFIGURATION - the configuration that lldb is built for (Release,
Release+Asserts, Debug, Debug+Asserts).
I also changed the LLVM build to not check if "lldb/llvm" is a symlink and
then assume it is a real llvm build directory versus the unzipped llvm.zip
package, so now you can actually have a "lldb/llvm" directory in your lldb
sources.
llvm-svn: 129112
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
overlap in the SWIG integration which has now been fixed by introducing
callbacks for initializing SWIG for each language (python only right now).
There was also a breakpoint command callback that called into SWIG which has
been abtracted into a callback to avoid cross over as well.
Added a new binary: lldb-platform
This will be the start of the remote platform that will use as much of the
Host functionality to do its job so it should just work on all platforms.
It is pretty hollowed out for now, but soon it will implement a platform
using the GDB remote packets as the transport.
llvm-svn: 128053
an interface to a local or remote debugging platform. By default each host OS
that supports LLDB should be registering a "default" platform that will be
used unless a new platform is selected. Platforms are responsible for things
such as:
- getting process information by name or by processs ID
- finding platform files. This is useful for remote debugging where there is
an SDK with files that might already or need to be cached for debug access.
- getting a list of platform supported architectures in the exact order they
should be selected. This helps the native x86 platform on MacOSX select the
correct x86_64/i386 slice from universal binaries.
- Connect to remote platforms for remote debugging
- Resolving an executable including finding an executable inside platform
specific bundles (macosx uses .app bundles that contain files) and also
selecting the appropriate slice of universal files for a given platform.
So by default there is always a local platform, but remote platforms can be
connected to. I will soon be adding a new "platform" command that will support
the following commands:
(lldb) platform connect --name machine1 macosx connect://host:port
Connected to "machine1" platform.
(lldb) platform disconnect macosx
This allows LLDB to be well setup to do remote debugging and also once
connected process listing and finding for things like:
(lldb) process attach --name x<TAB>
The currently selected platform plug-in can now auto complete any available
processes that start with "x". The responsibilities for the platform plug-in
will soon grow and expand.
llvm-svn: 127286
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple
to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
core we are dealing with into a single enumeration. If you need support for
a new Core and want to debug it in LLDB, it must be added to this list. In
the future we can allow for dynamic core registration, but for now it is
hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
The mach-o cpu type and subtype can be accessed using the getter functions:
uint32_t
ArchSpec::GetMachOCPUType () const;
uint32_t
ArchSpec::GetMachOCPUSubType () const;
But these functions are just converting out internal llvm::Triple::ArchSpec
+ ArchSpec::Core back into mach-o. Same goes for ELF.
All code has been updated to deal with the changes.
This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.
llvm-svn: 126278
a Debugger object is destroyed or re-set. (Thus making sure that, for
example, the Python interpreter finishes and exits cleanly rather than
being left in an undefined state.)
llvm-svn: 122255