DBI stream contains a stream number of the symbol record stream.
Symbol record streams is an array of length-type-value members.
Each member represents one symbol.
Publics stream contains offsets to the symbol record stream.
This patch is to print out all symbols that are referenced by
the publics stream.
Note that even with this patch, llvm-pdbdump cannot dump all the
information in a publics stream since it contains more information
than symbol names. I'll improve it in followup patches.
Differential Revision: http://reviews.llvm.org/D20480
llvm-svn: 270262
I don't yet fully understand the meaning of these data strcutures,
but at least it seems that their sizes and types are correct.
With this change, we can read publics streams till end.
Differential Revision: http://reviews.llvm.org/D20343
llvm-svn: 269861
As discovered in PR27758, GDB does not fully support the DWARF 4 format.
This patch ensures we always emit bitfields in the DWARF 2 when tuning for GDB.
llvm-svn: 269827
The DWARF spec states that a member entry may have either a
DW_AT_data_member_location or a DW_AT_data_bit_offset, but not both.
This fixes a bug found in PR 27758.
llvm-svn: 269731
The DWARF spec clearly states that a bit field member should have either a
DW_AT_byte_size or a DW_AT_bit_size, but not both.
Also the DW_AT_byte_size is redundant with the size of the type of the member.
This fixes a bug found in PR 27758.
llvm-svn: 269714
Publics stream seems to contain information as to public symbols.
It actually contains a serialized hash table along with fixed-sized
headers. This patch is not complete. It scans only till the end of
the stream and dump the header information. I'll write code to
de-serialize the hash table later.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20256
llvm-svn: 269484
Summary: This way we can get rid of one of the fields in the .def file.
Reviewers: llvm-commits
Subscribers: zturner
Differential Revision: http://reviews.llvm.org/D20251
llvm-svn: 269461
for the same subprogram.
This fixes a bug where DW_AT_abstract_origin is being emitted twice for
the same subprogram if a function is both inlined and emitted in the same
translation unit, by restoring the pre-r266446 behavior.
http://reviews.llvm.org/D20072
llvm-svn: 269103
This reuses the CVTypeDumper from libcodeview to dump full
information about type records within a PDB file.
Differential Revision: http://reviews.llvm.org/D20022
Reviewed By: rnk
llvm-svn: 268808
Summary:
If a function needs to allocate both callee-save stack memory and local
stack memory, we currently decrement/increment the SP in two steps:
first for the callee-save area, and then for the local stack area. This
changes the code to allocate them both at once at the very beginning/end
of the function. This has two benefits:
1) there is one fewer sub/add micro-op in the prologue/epilogue
2) the stack adjustment instructions act as a scheduling barrier, so
moving them to the very beginning/end of the function increases post-RA
scheduler's ability to move instructions (that only depend on argument
registers) before any of the callee-save stores
This change can cause an increase in instructions if the original local
stack SP decrement could be folded into the first store to the stack.
This occurs when the first local stack store is to stack offset 0. In
this case we are trading off one more sub instruction for one fewer sub
micro-op (along with benefits (2) and (3) above).
Reviewers: t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18619
llvm-svn: 268746
When printing raw PDB file fields, streams, and records, use the
ScopedPrinter class so we have consistency with llvm-readobj's output
format.
For the most part this is pretty mechanical, but I had to fix up the test
file to conform to the new YAMLesque output format. i added a few
additional helper functions to the ScopedPrinter such as one to print a
dotted version, etc.
Differential Revision: http://reviews.llvm.org/D19897
Reviewed By: rnk
llvm-svn: 268506
As requested by Rafael Espindola in his post-commit comments on r268036. This
makes the previous behaviour the default while still allowing verification of
IAS.
llvm-svn: 268496
This parses the TPI stream (stream 2) from the PDB file. This stream
contains some header information followed by a series of codeview records.
There is some additional complexity here in that alongside this stream of
codeview records is a serialized hash table in order to efficiently query
the types. We parse the necessary bookkeeping information to allow us to
reconstruct the hash table, but we do not actually construct it yet as
there are still a few things that need to be understood first.
Differential Revision: http://reviews.llvm.org/D19840
Reviewed By: ruiu, rnk
llvm-svn: 268343
Summary:
When SelectionDAG performs CSE it is possible that the context's source
location is different from that of the selected node. This can lead to
incorrect line number records. We update the debug location to the
one that occurs earlier in the instruction sequence.
This fixes PR21006.
Reviewers: echristo, sdmitrouk
Subscribers: jevinskie, asl, llvm-commits
Differential Revision: http://reviews.llvm.org/D12094
llvm-svn: 268323
PDB has a lot of similar data structures. We already have code
for parsing a Name Map, but PDB seems to have a different but
very similar structure that is a hash table. This is the
beginning of code needed in order to parse the name hash table,
but it is not yet complete. It parses the basic metadata of
the hash table, the bucket array, and the names buffer, but
doesn't use any of these fields yet as the data structure
requires a non-trivial amount of work to understand.
llvm-svn: 268268
Summary:
This is the follow-up patch for http://reviews.llvm.org/D19436
* Update the discriminator reading algorithm to match the assignment algorithm.
* Add test to cover the new algorithm.
Reviewers: dnovillo, echristo, dblaikie
Subscribers: danielcdh, dblaikie, echristo, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D19522
llvm-svn: 267945
We now read out the rest of the substreams from the DBI streams. One of
these substreams, the FileInfo substream, contains information about which
source files contribute to each module (aka compiland). This patch
additionally parses out the file information from that substream, and
dumps it in llvm-pdbdump.
Differential Revision: http://reviews.llvm.org/D19634
Reviewed by: ruiu
llvm-svn: 267928
The DWARF2 specification of DW_AT_bit_offset is ambiguous for
little-endian machines, but by restoring to the old behavior
we match what debuggers expect and what other popular compilers
generate.
llvm-svn: 267896
The DWARF2 specification of DW_AT_bit_offset was written from the perspective of
a big-endian machine with unclear semantics for other systems. DWARF4
deprecated DW_AT_bit_offset and introduced a new attribute DW_AT_data_bit_offset
that simply counts the number of bits from the beginning of the containing
entity regardless of endianness.
After this patch LLVM emits DW_AT_bit_offset for DWARF 2 or 3 and
DW_AT_data_bit_offset when DWARF 4 or later is requested.
llvm-svn: 267895
This gets more data out of the DBI strema of the PDB. In
particular it extracts the metadata for the list of modules
(compilands) that this PDB contains info about, and adds support
for dumping these fields to llvm-pdbdump.
Differential Revision: http://reviews.llvm.org/D19570
Reviewed By: ruiu
llvm-svn: 267818
The DBI stream contains a lot of bookkeeping information for other
streams. In particular it contains information about section contributions
and linked modules. This patch is a first attempt at parsing some of the
information out of the DBI stream. It currently only parses and dumps the
headers of the DBI stream, so none of the module data or section
contribution data is pulled out.
This is just a proof of concept that we understand the basic properties of
the DBI stream's metadata, and followup patches will try to extract more
detailed information out.
Differential Revision: http://reviews.llvm.org/D19500
Reviewed By: majnemer, ruiu
llvm-svn: 267585
in a debug-info-bearing function has a debug location attached to it. Failure to
do so causes an "!dbg attachment points at wrong subprogram for function"
assertion failure when the inliner sets up inline scope info.
rdar://problem/25878916
This reaplies r267320 without changes after fixing an issue in the OpenMP IR
generator in clang.
llvm-svn: 267370
in a debug-info-bearing function has a debug location attached to it. Failure to
do so causes an "!dbg attachment points at wrong subprogram for function"
assertion failure when the inliner sets up inline scope info.
rdar://problem/25878916
llvm-svn: 267320
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
The dwo_name was added to dwo files to improve diagnostics in dwp, but
it confuses tools that attempt to load any dwo named by a dwo_name, even
ones inside dwos. Avoid this by keeping track of whether a unit is
already a dwo unit, and if so, not loading further dwos.
llvm-svn: 267241
Rather than relying on the gmlt-like data emitted into the .o/executable
which only contains the simple name of any inlined functions, use the
.dwo file if present.
Test symbolication with/without a .dwo, and the old test that was
testing behavior when no gmlt-like data was present. (I haven't included
a test of non-gmlt-like data + no .dwo (that would be akin to
symbolication with no debug info) but we could add one for completeness)
The test was simplified a bit to be a little clearer (unoptimized, force
inline, using a function call as the inlined entity) and regenerated
with ToT clang. For the no-gmlt-like-data case, I modified Clang back to
its old behavior temporarily & the .dwo file is identical so it is
shared between the two executables.
llvm-svn: 267227
r267049 broke multiple buildbots (e.g. clang-cmake-mips, and clang-x86_64-linux-selfhost-modules) which the follow-ups have not yet resolved and this is preventing subsequent committers from being notified about additional failures on the affected buildbots.
llvm-svn: 267148
Before this fix, DILexicalBlockFile entries were skipped only in some cases and were not in other cases.
Differential Revision: http://reviews.llvm.org/D18724
llvm-svn: 267004
With this change, ideally IR pass can always generate llvm.stackguard
call to get the stack guard; but for now there are still IR form stack
guard customizations around (see getIRStackGuard()). Future SSP
customization should go through LOAD_STACK_GUARD.
There is a behavior change: stack guard values are not CSEed anymore,
since we should never reuse the value in case that it has been spilled (and
corrupted). See ssp-guard-spill.ll. This also cause the change of stack
size and codegen in X86 and AArch64 test cases.
Ideally we'd like to know if the guard created in llvm.stackprotector() gets
spilled or not. If the value is spilled, discard the value and reload
stack guard; otherwise reuse the value. This can be done by teaching
register allocator to know how to rematerialize LOAD_STACK_GUARD and
force a rematerialization (which seems hard), or check for spilling in
expandPostRAPseudo. It only makes sense when the stack guard is a global
variable, which requires more instructions to load. Anyway, this seems to go out
of the scope of the current patch.
llvm-svn: 266806