Summary: Since we're passing references to dbg.value as pointers,
we need to have the frontend properly declare their sizes and
alignments (as it already does for regular pointers) in preparation
for my upcoming patch to have the verifer check that the sizes agree.
Also augment the backend logic that skips actually emitting this
information into DWARF such that it also handles reference types.
Reviewers: aprantl, dexonsmith, dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D14275
llvm-svn: 253186
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
Currently the DWARF backend requires that subprograms have a type, and
the type is ignored if it has an empty type array. The long term
direction here -- see PR23079 -- is instead to skip the type entirely if
there's no valid type.
It turns out we have cases in tree of missing types on subprograms, but
since they're not referenced by compile units, the backend never crashes
on them. One option would be to add a Verifier check that subprograms
have types, and fix the bitrot. However, this is a fair bit of churn
(20-30 testcases) that would be reversed anyway by PR23079.
I found this inconsistency because of a WIP patch and upgrade script for
PR23367 that started crashing on test/DebugInfo/2010-10-01-crash.ll.
This commit updates the testcase to reference the subprogram from the
compile unit, and fixes the resulting crash (in line with the direction
of PR23079). This also updates `DIBuilder` to stop assuming a non-null
pointer for the subroutine types.
llvm-svn: 246333
Change `DIBuilder` always to produce 'distinct' nodes when creating
`DISubprogram` definitions. I measured a ~5% memory improvement in the
link step (of ld64) when using `-flto -g`.
`DISubprogram`s are used in two ways in the debug info graph.
Some are definitions, point at actual functions, and can't really be
shared between compile units. With full debug info, these point down at
their variables, forming uniquing cycles. These uniquing cycles are
expensive to link between modules, since all unique nodes that reference
them transitively need to be duplicated (see commit message for r244181
for more details).
Others are declarations, primarily used for member functions in the type
hierarchy. Definitions never show up there; instead, a definition
points at its corresponding declaration node.
I started by making all subprograms 'distinct'. However, that was too
big a hammer: memory usage *increased* ~5% (net increase vs. this patch
of ~10%) because the 'distinct' declarations undermine LTO type
uniquing. This is a targeted fix for the definitions (where uniquing is
an observable problem).
A couple of notes:
- There's an accompanying commit to update IRGen testcases in clang.
- ^ That's what I'm using to test this commit.
- In a follow-up, I'll change the verifier to require 'distinct' on
definitions and add an upgrade to `BitcodeReader`.
llvm-svn: 246098
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
Replace the general `createLocalVariable()` with two more specific
functions: `createParameterVariable()` and `createAutoVariable()`, and
rewrite the documentation.
Besides cleaning up the API, this avoids exposing the fake DWARF tags
`DW_TAG_arg_variable` and `DW_TAG_auto_variable` to frontends, and is
preparation for removing them completely.
llvm-svn: 243764
This is a necessary prerequisite for bootstrapping the emission
of debug info inside modules.
- Adds a FlagExternalTypeRef to DICompositeType.
External types must have a unique identifier.
- External type references are emitted using a forward declaration
with a DW_AT_signature([DW_FORM_ref_sig8]) based on the UID.
http://reviews.llvm.org/D9612
llvm-svn: 242302
It is meant to be used to record modules @imported by the current
compile unit, so a debugger an import the same modules to replicate this
environment before dropping into the expression evaluator.
DIModule is a sibling to DINamespace and behaves quite similarly.
In addition to the name of the module it also records the module
configuration details that are necessary to uniquely identify the module.
This includes the configuration macros (e.g., -DNDEBUG), the include path
where the module.map file is to be found, and the isysroot.
The idea is that the backend will turn this into a DW_TAG_module.
http://reviews.llvm.org/D9614
rdar://problem/20965932
llvm-svn: 241017
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
so DWARF skeleton CUs can be expression in IR. A skeleton CU is a
(typically empty) DW_TAG_compile_unit that has a DW_AT_(GNU)_dwo_name and
a DW_AT_(GNU)_dwo_id attribute. It is used to refer to external debug info.
This is a prerequisite for clang module debugging as discussed in
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-November/040076.html.
In order to refer to external types stored in split DWARF (dwo) objects,
such as clang modules, we need to emit skeleton CUs, which identify the
dwarf object (i.e., the clang module) by filename (the SplitDebugFilename)
and a hash value, the dwo_id.
This patch only contains the IR changes. The idea is that a CUs with a
non-zero dwo_id field will be emitted together with a DW_AT_GNU_dwo_name
and DW_AT_GNU_dwo_id attribute.
http://reviews.llvm.org/D9488
rdar://problem/20091852
llvm-svn: 237949
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Remove the `DIArray` and `DITypeArray` typedefs, preferring the
underlying types (`DebugNodeArray` and `MDTypeRefArray`, respectively).
llvm-svn: 235413
As a step toward killing `DIDescriptor` and its subclasses, remove it
from the `DIBuilder` API. Replace the subclasses with appropriate
pointers from the new debug info hierarchy. There are a couple of
possible surprises in type choices for out-of-tree frontends:
- Subroutine types: `MDSubroutineType`, not `MDCompositeTypeBase`.
- Composite types: `MDCompositeType`, not `MDCompositeTypeBase`.
- Scopes: `MDScope`, not `MDNode`.
- Generic debug info nodes: `DebugNode`, not `MDNode`.
This is part of PR23080.
llvm-svn: 235111
PR23080 is almost finished. With this commit, there's no consequential
API in `DIDescriptor` and its subclasses. What's left?
- Default-constructed to `nullptr`.
- Handy `const_cast<>` (constructed from `const`, but accessors are
non-`const`).
I think the safe way to catch those is to delete the classes and fix
compile errors. That'll be my next step, after I delete the `DITypeRef`
(etc.) wrapper around `MDTypeRef`.
llvm-svn: 235069
Continuing PR23080, gut `DIType` and its various subclasses, leaving
behind thin wrappers around the pointer types in the new debug info
hierarchy.
llvm-svn: 235064
Change `DIBuilder::insertDeclare()` and `insertDbgValueIntrinsic()` to
take an `MDLocation*`/`DebugLoc` parameter which it attaches to the
created intrinsic. Assert at creation time that the `scope:` field's
subprogram matches the variable's. There's a matching `clang` commit to
use the API.
The context for this is PR22778, which is removing the `inlinedAt:`
field from `MDLocalVariable`, instead deferring to the `!dbg` location
attached to the debug info intrinsic. The best way to ensure we always
have a `!dbg` attachment is to require one at creation time. I'll be
adding verifier checks next, but this API change is the best way to
shake out frontend bugs.
Note: I added an `llvm_unreachable()` in `bindings/go` and passed in
`nullptr` for the `DebugLoc`. The `llgo` folks will eventually need to
pass a valid `DebugLoc` here.
llvm-svn: 235041
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
llvm-svn: 234850
Change `MDSubprogram::getFunction()` and
`MDGlobalVariable::getConstant()` to return a `Constant`. Previously,
both returned `ConstantAsMetadata`.
llvm-svn: 234699
Stop leaking temporary nodes from `DIBuilder::createCompileUnit()`.
`replaceAllUsesWith()` doesn't delete the nodes, so we need to delete
them "manually" (well, `TempMDTuple` does that for us).
Similarly, stop leaking the temporary nodes used for variables of
subprograms.
llvm-svn: 234617
This reverts commit r234329, which insufficiently appeased older
`clang`s (apparently that wasn't the only call site). r234331 was a
more complete fix.
llvm-svn: 234333
A bot is failing [1] after r234326, apparently because this code doesn't
do what I think it should:
template <class U>
explicit MDTupleTypedArrayWrapper(
const U &Tuple,
typename std::enable_if<
std::is_constructible<const MDTuple *, U>::value>::type * = nullptr)
: N(Tuple) {}
Just be explicit for now.
[1]: http://lab.llvm.org:8080/green/job/clang-stage1-cmake-RA-incremental_build/8201/
llvm-svn: 234329
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
llvm-svn: 234290
`DIDescriptor`'s subclasses allow construction from incompatible
pointers, and `DIDescriptor` defines a series of `isa<>`-like functions
(e.g., `isCompileUnit()` instead of `isa<MDCompileUnit>()`) that clients
tend to use like this:
if (DICompileUnit(N).isCompileUnit())
foo(DICompileUnit(N));
These construction patterns work together to make `DIDescriptor` behave
differently from normal pointers.
Instead, use built-in `isa<>`, `dyn_cast<>`, etc., and only build
`DIDescriptor`s from pointers that are valid for their type.
I've split this into a few commits for different parts of LLVM and clang
(to decrease the patch size and increase the chance of review).
Generally the changes I made were NFC, but in a few places I made things
stricter if it made sense from the surrounded code.
Eventually a follow-up commit will remove the API for the "old" way.
llvm-svn: 234255
Remove `DIDescriptor::Verify()` and the `Verify()`s from subclasses.
They had already been gutted, and just did an `isa<>` check.
In a couple of cases I've temporarily dropped the check entirely, but
subsequent commits are going to disallow conversions to the
`DIDescriptor`s directly from `MDNode`, so the checks will come back in
another form soon enough.
llvm-svn: 234201
Use `MDTypeRef` (etc.) in the new debug info hierarchy rather than raw
`Metadata *` pointers.
I rolled in a change to `DIBuilder` that looks unrelated: take `DIType`
instead of `DITypeRef` as type arguments when creating variables.
However, this was the simplest way to use `MDTypeRef` within the
functions, and didn't require any cleanups from callers in clang (since
they were all passing in `DIType`s anyway, relying on their implicit
conversions to `DITypeRef`).
llvm-svn: 234197
Check operands of `MDSubprogram`s in the verifier, and update the
accessors and factory functions to use more specific types.
There were a lot of broken testcases, which I fixed in r233466. If you
have out-of-tree tests for debug info, you probably need similar changes
to the ones I made there.
llvm-svn: 233559
Add verify checks for `MDType` subclasses and for `MDCompileUnit`.
These new checks don't yet incorporate everything from `Verify()`, but
at least they sanity check the operands. Also downcast accessors as
possible.
A lot of these accessors can't be downcast as far as we'd like because
of arrays of typed objects (stored in a generic `MDTuple`) and
`MDString`-based type references. Eventually I'll port over `DIRef<>`
and `DITypedArray<>` from `DebugInfo.h` to clean those up as well.
Updated bitrotted testcases separately in r233415 and r233443 to reduce
churn on the off-chance this needs to be reverted.
llvm-svn: 233446
Check fields from `MDLocalVariable` and `MDGlobalVariable` and change
the accessors to downcast to the right types. `getType()` still returns
`Metadata*` since it could be an `MDString`-based reference.
Since local variables require non-null scopes, I also updated `LLParser`
to require a `scope:` field.
A number of testcases had grown bitrot and started failing with this
patch; I committed them separately in r233349. If I just broke your
out-of-tree testcases, you're probably hitting similar problems (so have
a look there).
llvm-svn: 233389
Change `getNonCompileUnitScope()` to return `MDScope` and
`getConstantAsMetadata()` to return `ConstantAsMetadata`. This will
make it easier to start requiring more type safety in the debug info
hierarchy.
llvm-svn: 233340
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
llvm-svn: 231082
The scope/context is always the compile unit, which we replace with
`nullptr` anyway (via `getNonCompileUnitScope()`). Drop it explicitly.
I noticed this field was always null while writing testcase upgrade
scripts to transition to the new hierarchy. Seems wasteful to
transition it over if it's already out-of-use.
llvm-svn: 229740
No caller specifies anything different; these parameters are dead code
and probably always have been. The new hierarchy doesn't bother with
the fields at all (see r228607 and r228652).
llvm-svn: 229037
The sub-arrays for compile units have for a long time been initialized
to distinct temporary nodes with the `DW_TAG_base_type` tag, with no
other operands. These invalid `DIBasicType`s are later replaced with
appropriate arrays.
This seems like a poor man's assertion that the arrays do eventually get
replaced. These days, temporaries in the graph will cause assertions
when writing bitcode or assembly, so this isn't necessary. Use
temporary empty tuples instead.
Note that the whole idea of using temporaries and then replacing them
later is wasteful here. We never actually want to merge compile units
by uniquing based on content. Compile units should use `getDistinct()`
instead of `get()`, and then their operands can be freely replaced later
on.
llvm-svn: 228967
intermediate representation. This
- increases consistency by using the same granularity everywhere
- allows for pieces < 1 byte
- DW_OP_piece didn't actually allow storing an offset.
Part of PR22495.
llvm-svn: 228631
`DIExpression` deals with `uint64_t`, so it doesn't make sense that
`createExpression()` is created from `int64_t`. Switch to `uint64_t` to
unify them.
I've temporarily left in the `int64_t` version, which forwards to the
`uint64_t` version. I'll delete it once I've updated the callers.
llvm-svn: 228619
This reverts commit r226542, effectively reapplying r226540. This time,
initialize `IsEmpty` in the copy and move constructors as well.
llvm-svn: 226545
Change `HeaderBuilder` API to work well even when it's not starting with
a tag. There's already one case like this, and the tag is moving
elsewhere as part of PR22235.
llvm-svn: 226540
As pointed out in r226501, the distinction between `MDNode` and
`UniquableMDNode` is confusing. When we need subclasses of `MDNode`
that don't use all its functionality it might make sense to break it
apart again, but until then this makes the code clearer.
llvm-svn: 226520
Change `MDTuple::getTemporary()` and `MDLocation::getTemporary()` to
return (effectively) `std::unique_ptr<T, MDNode::deleteTemporary>`, and
clean up call sites. (For now, `DIBuilder` call sites just call
`release()` immediately.)
There's an accompanying change in each of clang and polly to use the new
API.
llvm-svn: 226504
Split `GenericMDNode` into two classes (with more descriptive names).
- `UniquableMDNode` will be a common subclass for `MDNode`s that are
sometimes uniqued like constants, and sometimes 'distinct'.
This class gets the (short-lived) RAUW support and related API.
- `MDTuple` is the basic tuple that has always been returned by
`MDNode::get()`. This is as opposed to more specific nodes to be
added soon, which have additional fields, custom assembly syntax,
and extra semantics.
This class gets the hash-related logic, since other sublcasses of
`UniquableMDNode` may need to hash based on other fields.
To keep this diff from getting too big, I've added casts to `MDTuple`
that won't really scale as new subclasses of `UniquableMDNode` are
added, but I'll clean those up incrementally.
(No functionality change intended.)
llvm-svn: 225682
a size and alignment. Several assertions in DwarfDebug rely on all variable
types to report back a size, or to be derived from a type with a size.
Tested in CFE.
llvm-svn: 224780
Add API to DIBuilder to handle self-referencing `DICompositeType`s.
Self-references aren't expected in the debug info graph, and we take
advantage of that by only calling `resolveCycles()` on nodes that were
once forward declarations (otherwise, DIBuilder needs an expensive
tracking reference to every unresolved node it creates, which in cyclic
graphs is *all of them*).
However, clang seems to create self-referencing `DICompositeType`s. Add
API to manage this safely. The paired commit to clang will include the
regression test.
I'll make the `DICompositeType` API `private` in a follow-up to prevent
misuse (I've separated that to prevent build failures from missing the
clang commit).
llvm-svn: 224482
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
These fields would need to be explicitly deleted before we RAUW the temporary
node anyway (this was done in cfe commit r222373). Instead, do not create
these useless nodes in the first place.
llvm-svn: 222434
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
use DIScopeRef.
A paired commit at clang will follow to show cases where we will use an
identifer for the context of a global variable.
rdar://18958417
llvm-svn: 222195
Make explicit the requirement that most IR values in `DIBuilder` are
`Constant`. This requires a follow-up change in clang.
Part of PR21532.
llvm-svn: 222070
Imported declarations can be DIGlobalVariables which aren't a DIScope. Today
clang (unknowingly I believe) shoehorns these into a DIScope and it all works
just because we never access the fields.
llvm-svn: 221466
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
This reverts commit r218820. It turns out that Adrian has an
outstanding SROA patch that uses this.
I've updated it to forward to `createExpression()`.
llvm-svn: 218828
I neglected to update `DIBuilder::createPieceExpression()` in r218797,
which I noticed while rebasing a patch for PR17891. On closer
inspection, it looks like dead code.
If there are any downstream users of this, you should transition to the
more general `createExpression()`. Or, we can add this back, but then
it should just forward to `createExpression()`.
llvm-svn: 218820
`DIExpression`'s elements are 64-bit integers that are stored as
`ConstantInt`. The accessors already encapsulate the storage. This
commit updates the `DIBuilder` API to also encapsulate that.
llvm-svn: 218797
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
Summary: These will be used to implement support for useful forward declarartions.
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5328
llvm-svn: 217949
Noticed while trying to understand how the merge of forward decalred types
and defintions work.
Reviewers: echristo, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5291
llvm-svn: 217514
Somewhat unnoticed in the original implementation of discriminators, but
it could cause instructions to end up in new, small,
DW_TAG_lexical_blocks due to the use of DILexicalBlock to track
discriminator changes.
Instead, use DILexicalBlockFile which we already use to track file
changes without introducing new scopes, so it works well to track
discriminator changes in the same way.
llvm-svn: 216239
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
llvm-svn: 214576
Per feedback on r214111, we are going to use null to represent unspecified
parameter. If the type array is {null}, it means a function that returns void;
If the type array is {null, null}, it means a variadic function that returns
void. In summary if we have more than one element in the type array and the last
element is null, it is a variadic function.
rdar://17628609
llvm-svn: 214189
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
llvm-svn: 214132
Typedef DIArray to DITypedArray<DIDescriptor>. Also typedef DITypeArray as
DITypedArray<DITypeRef>.
This is the third of a series of patches to handle type uniqueing of the
type array for a subroutine type.
This commit should have no functionality change.
llvm-svn: 214115
This is the first of a series of patches to handle type uniqueing of the
type array for a subroutine type.
This commit makes sure unspecified_parameter is a DIType to enable converting
the type array for a subroutine type to an array of DITypes.
This commit should have no functionality change. With this commit, we may
change unspecified type to be a DITrivialType instead of a DIType.
llvm-svn: 214111
separate MDNode so they can be uniqued via folding set magic. To conserve
space, DIVariable nodes are still variable-length, with the last two
fields being optional.
No functional change.
http://reviews.llvm.org/D3526
llvm-svn: 212050
Summary:
This new debug emission kind supports emitting line location
information in all instructions, but stops code generation
from emitting debug info to the final output.
This mode is useful when the backend wants to track source
locations during code generation, but it does not want to
produce debug info. This is currently used by optimization
remarks (-pass-remarks, -pass-remarks-missed and
-pass-remarks-analysis).
To prevent debug info emission, DIBuilder never inserts the
annotation 'llvm.dbg.cu' when LocTrackingOnly is enabled.
Reviewers: echristo, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4234
llvm-svn: 211609
This field is used for a list of variables to ensure they are not lost
during optimization (they're only included when optimizations are
enabled).
llvm-svn: 208159
Also, provide the ability to create temporary and non-temporary
declarations, as not all declarations may be replaced by definitions
later on.
This provides the necessary infrastructure for Clang to fix PR19598,
leaking temporary MDNodes in Clang's debug info generation.
llvm-svn: 208054
This the LLVM portion that will allow Clang and other frontends to emit
typedefs of void by providing a null type for the typedef's underlying
type.
llvm-svn: 207777
I really should read the spec more often (and test GCC more often too).
I just assumed that namespace aliases would be the same as using
directives, except with a name. But apparently that's not how the DWARF
standards suggests they be implemented. DWARF4 provides an example and
other non-normative text suggesting that namespace aliases be
implemented by named imported declarations intsead of named imported
modules.
So be it.
llvm-svn: 205685
No other functionality changes, DIBuilder testcase is included in a paired
CFE commit.
This relaxes the assertion in isScopeRef to also accept subclasses of
DIScope.
llvm-svn: 205279
This allows us to catch more opportunities for ODR-based type uniquing
during LTO.
Paired commit with CFE which updates some testcases to verify the new
DIBuilder behavior.
llvm-svn: 204106
during the finalization for CGDebugInfo in clang we would RAUW
a type and it would result in a corrupted MDNode for an
imported declaration.
Testcase pending as reducing has been difficult.
llvm-svn: 202540
and update everything accordingly. This can be used to conditionalize
the amount of output in the backend based on the amount of debug
requested/metadata emission scheme by a front end (e.g. clang).
Paired with a commit to clang.
llvm-svn: 202332
For some anachronistic reason we were producing {i32 0} for zero-length
debug info arrays.
(this change is paired with a Clang change and may cause temporary
buildbot noise)
Let's not.
llvm-svn: 200721
is updated to use DITypeRef.
Move isUnsignedDIType and getOriginalTypeSize from DebugInfo.h to be static
helper functions in DwarfCompileUnit. We already have a static helper function
"isTypeSigned" in DwarfCompileUnit, and a pointer to DwarfDebug is added to
resolve the derived-from field. All three functions need to go across link
for derived-from fields, so we need to get hold of a type identifier map.
A pointer to DwarfDebug is also added to DbgVariable in order to resolve the
derived-from field.
Debug info verifier is updated to check a derived-from field is a TypeRef.
Verifier will not go across link for derived-from fields, in debug info finder,
we go across the link to add derived-from fields to types.
Function getDICompositeType is only used by dragonegg and since dragonegg does
not generate identifier for types, we use an empty map to resolve the
derived-from field.
When printing a derived-from field, we use DITypeRef::getName to either return
the type identifier or getName of the DIType.
A paired commit at clang is required due to changes to DIBuilder.
llvm-svn: 192018
is updated to use DITypeRef.
Move isUnsignedDIType and getOriginalTypeSize from DebugInfo.h to be static
helper functions in DwarfCompileUnit. We already have a static helper function
"isTypeSigned" in DwarfCompileUnit, and a pointer to DwarfDebug is added to
resolve the derived-from field. All three functions need to go across link
for derived-from fields, so we need to get hold of a type identifier map.
A pointer to DwarfDebug is also added to DbgVariable in order to resolve the
derived-from field.
Debug info verifier is updated to check a derived-from field is a TypeRef.
Verifier will not go across link for derived-from fields, in debug info finder,
we go across the link to add derived-from fields to types.
Function getDICompositeType is only used by dragonegg and since dragonegg does
not generate identifier for types, we use an empty map to resolve the
derived-from field.
When printing a derived-from field, we use DITypeRef::getName to either return
the type identifier or getName of the DIType.
A paired commit at clang is required due to changes to DIBuilder.
llvm-svn: 191800
In DIBuilder, the context field of a TAG_member is updated to use the
scope reference. Verifier is updated accordingly.
DebugInfoFinder now needs to generate a type identifier map to have
access to the actual scope. Same applies for BreakpointPrinter.
processModule of DebugInfoFinder is called during initialization phase
of the verifier to make sure the type identifier map is constructed early
enough.
We are now able to unique a simple class as demonstrated by the added
testing case.
llvm-svn: 190334
of DIType.
Implement DIType::generateRef to return a type reference. This function will be
used in setContaintingType and in DIBuilder to generete the type reference.
No functionality change.
llvm-svn: 190188
ptr_to_member.
We introduce a new class DITypeRef that represents a reference to a DIType.
It wraps around a Value*, which can be either an identifier in MDString
or an actual MDNode. The class has a helper function "resolve" that
finds the actual MDNode for a given DITypeRef.
We specialize getFieldAs to return a field that is a reference to a
DIType. To correctly access the base type field of ptr_to_member,
getClassType now calls getFieldAs<DITypeRef> to return a DITypeRef.
Also add a typedef for DITypeIdentifierMap and a helper
generateDITypeIdentifierMap in DebugInfo.h. In DwarfDebug.cpp, we keep
a DITypeIdentifierMap and call generateDITypeIdentifierMap to actually
populate the map.
Verifier is updated accordingly.
llvm-svn: 190081
createClassType, createStructType, createUnionType, createEnumerationType,
and createForwardDecl will retain a type when created with a unique identifier,
to make sure they are treated as used even when all uses are replaced with
the identifiers.
Use TrackingVH<MDNode> instead of MDNode in AllRetainTypes, since the created
node can later be updated.
The change will be tested when clients of DIBuilder start to pass in non-empty
unique identifier.
llvm-svn: 189621
createClassType, createStructType, createUnionType, createEnumerationType,
and createForwardDecl will take an optional StringRef to pass in
the unique identifier.
llvm-svn: 189410
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
llvm-svn: 189282
the type exists.
Fix up cases where we weren't checking for optional types and add
an assert to addType to make sure we catch this in the future.
Fix up a testcase that was using the tag for DW_TAG_array_type
when it meant DW_TAG_enumeration_type.
llvm-svn: 187963