<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
There is a new static ObjectFile function you can call:
size_t
ObjectFile::GetModuleSpecifications (const FileSpec &file,
lldb::offset_t file_offset,
ModuleSpecList &specs)
This will fill in "specs" which the details of all the module specs (file + arch + UUID (if there is one) + object name (for BSD archive objects eventually) + file offset to the object in question).
This helps us when a user specifies a file that contains a single architecture, and also helps us when we are given a debug symbol file (like a dSYM file on MacOSX) that contains one or more architectures and we need to be able to match it up to an existing Module that has no debug info.
llvm-svn: 180224
lldb was mmap'ing archive files once per .o file it loads, now it correctly shares the archive between modules.
LLDB was also always mapping entire contents of universal mach-o files, now it maps just the slice that is required.
Added a new logging channel for "lldb" called "mmap" to help track future regressions.
Modified the ObjectFile and ObjectContainer plugin interfaces to take a data offset along with the file offset and size so we can implement the correct caching and efficient reading of parts of files without mmap'ing the entire file like we used to.
The current implementation still keeps entire .a files mmaped (once) and entire slices from universal files mmaped to ensure that if a client builds their binaries during a debug session we don't lose our data and get corrupt object file info and debug info.
llvm-svn: 174524
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
mmap() the entire object file contents into memory with MAP_PRIVATE.
We do this because object file contents can change on us and currently
this helps alleviate this situation. It also make the code for accessing
object file data much easier to manage and we don't end up opening the
file, reading some data and closing the file over and over.
llvm-svn: 148017
used to do this because we needed to find the shared pointer for a .o
file when the .o file's module was needed in a SymbolContext since the
module in a symbol context was a shared pointer. Now that we are using
intrusive pointers we don't have this limitation anymore since any
instrusive shared pointer can be made from a pointer to an object
all on its own.
Also switched over to having the Module and SymbolVendor use shared
pointers to their object files as had a leak on MacOSX when the
SymbolVendor's object file wasn't the same as the Module's (debug info
in a stand along file (dSYM file)). Now everything will correctly clean
itself up when the module goes away after an executable gets rebuilt.
Now we correctly get rid of .o files that are used with the DWARF with
debug map executables on subsequent runs since the only shared pointer
to the object files in from the DWARF symbol file debug map parser, and
when the module gets replaced, it destroys to old one along with all .o
files.
Also added a small optimization when using BSD archives where we will
remove old BSD containers from the shared list when they are outdated.
llvm-svn: 140002
an interface to a local or remote debugging platform. By default each host OS
that supports LLDB should be registering a "default" platform that will be
used unless a new platform is selected. Platforms are responsible for things
such as:
- getting process information by name or by processs ID
- finding platform files. This is useful for remote debugging where there is
an SDK with files that might already or need to be cached for debug access.
- getting a list of platform supported architectures in the exact order they
should be selected. This helps the native x86 platform on MacOSX select the
correct x86_64/i386 slice from universal binaries.
- Connect to remote platforms for remote debugging
- Resolving an executable including finding an executable inside platform
specific bundles (macosx uses .app bundles that contain files) and also
selecting the appropriate slice of universal files for a given platform.
So by default there is always a local platform, but remote platforms can be
connected to. I will soon be adding a new "platform" command that will support
the following commands:
(lldb) platform connect --name machine1 macosx connect://host:port
Connected to "machine1" platform.
(lldb) platform disconnect macosx
This allows LLDB to be well setup to do remote debugging and also once
connected process listing and finding for things like:
(lldb) process attach --name x<TAB>
The currently selected platform plug-in can now auto complete any available
processes that start with "x". The responsibilities for the platform plug-in
will soon grow and expand.
llvm-svn: 127286
defines that are in "llvm/Support/MachO.h". This should allow ObjectFileMachO
and ObjectContainerUniversalMachO to be able to be cross compiled in Linux.
Also did some cleanup on the ASTType by renaming it to ClangASTType and
renaming the header file. Moved a lot of "AST * + opaque clang type *"
functionality from lldb_private::Type over into ClangASTType.
llvm-svn: 109046