and destructors when the two entities are semantically identical, i.e. when
the class has no virtual base classes. We only do this for linkage types
for which aliases are supported, i.e. internal and external, i.e. not linkonce.
llvm-svn: 96451
We can much more succinctly refer to these functions this way.
Also change the default behavior of createCXString(StringRef&) to duplicate the
string. This is almost always what we want. The other case is where we pass
a constant c-string, which uses the other version of createCXString().
llvm-svn: 96423
repeatedly reloading from an alloca. We still need to create the alloca
for debug info purposes (although we currently create it in all cases
because of some abstraction boundaries that're hard to break down).
llvm-svn: 96403
which describes temporary objects of class type in C++. Use this to
provide a more-specific, remappable diagnostic when takin the address
of such a temporary.
llvm-svn: 96396
now cope with the destruction of types named as dependent templates,
e.g.,
y->template Y<T>::~Y()
Nominally, we implement C++0x [basic.lookup.qual]p6. However, we don't
follow the letter of the standard here because that would fail to
parse
template<typename T, typename U>
X0<T, U>::~X0() { }
properly. The problem is captured in core issue 339, which gives some
(but not enough!) guidance. I expect to revisit this code when the
resolution of 339 is clear, and/or we start capturing better source
information for DeclarationNames.
Fixes PR6152.
llvm-svn: 96367
indicate that it was enabled with -pedantic so people know
why they're getting them:
$ printf "int x;" | clang -xc - -pedantic
<stdin>:1:7: warning: no newline at end of file [-pedantic]
int x;
^
llvm-svn: 96365
the offset to the virtual bases statically inside of relying on the virtual
base offsets in the object's vtable(s). This is both more efficient and
sound against the destructor's manipulation of the vtables.
Also extract a few helper routines.
Oh and we seem to pass all tests with an optimized clang now.
llvm-svn: 96327
comparing their types under the assumption that they are equivalent,
rather than importing the types and then checking for compatibility. A
few minor tweaks here:
- Teach structural matching to handle compatibility between
function types with prototypes and those without prototypes.
- Teach structural matching that an incomplete record decl is the
same as any other record decl with the same name.
- Keep track of pairs of declarations that we have already checked
(but failed to find as structurally matching), so we don't emit
diagnostics repeatedly.
- When importing a typedef of an anonymous tag, be sure to link the
imported tag type to its typedef.
With these changes, we survive a repeated import of <stdlib.h> and
<stdio.h>. Alas, the ASTNodeImporter is getting a little grotty.
llvm-svn: 96298
two types in different AST contexts are equivalent. Rather than
transforming the type from one context into the other context, we
perform a deep structural comparison of the types. This change
addresses a serious problem with recursive data types like
struct ListNode {
int value;
struct ListNode *Next;
} xList;
llvm-svn: 96278
those declared in it. This is to allow duplicate
property diagnostics for properties declared in class extensions
multiple times (radar 7629420) and for future use.
llvm-svn: 96276
of operating on each code decl. This exposes two flaws in AnalysisConsumer
that should eventually be fixed:
(1) It is not possible to associate multiple "actions" with a single
command line argument. This will require the notion of an
"analysis" group, and possibly tablegen support. (although eventually
we want to support dynamically loading analyses as well)
(2) AnalysisConsumer may not actually be scanning the declarations in namespaces.
We'll experiment first in LLVMConventionsChecker before changing the
behavior in AnalysisConsumer.
llvm-svn: 96183
Currently these checks are intended to be largely syntactical, but may get more
sophisticated over time.
As an initial foray into this brave new world, emit a static analyzer warning
when binding a temporary 'std::string' to an 'llvm::StringRef' where the
lifetime of the 'std::string' does not outlive the 'llvm::StringRef'.
llvm-svn: 96147
(1) Since CXXMethodDecl subclasses FunctionDecl (and CXXDestructorDecl
and CXXConversion subclass CXXMethodDecl), refactor switch statement
to handle them all in one spot.
(2) Use 'DeclarationName::getAsString()' to handle all functions that
don't have simple identifiers (fixing a null dereference when scanning
for specific functions).
llvm-svn: 96146
see it. Instead, translate the locations up-front when we create a
CXSourceRange.
- This is part of a move to make CXSourceRange a pure half-open range, which is
a more natural API for clients to deal with. More cleanups to follow.
llvm-svn: 96144
or that's been hidden by a non-type (in C++).
The ideal C++ diagnostic here would note the hiding declaration, but this
is a good start.
llvm-svn: 96141
directly to Index, instead of requiring the input file to be first. This makes
the examples behave more like 'clang'.
For example,
ddunbar@giles:tmp$ echo '#include <string>' | python ~/llvm/tools/clang/bindings/python/examples/cindex/cindex-includes.py -- -x c++ - | wc -l
114
ddunbar@giles:tmp$ echo '#include <stdio.h>' | python ~/llvm/tools/clang/bindings/python/examples/cindex/cindex-includes.py -- -x c - | wc -l
10
llvm-svn: 96107
rebuilding a typename type terminating in a template-id (with
dependent template name, naturally) as a TypenameType when, because
its context could be fully resolved, we should have been building it
as a QualifiedNameType. Fixes PR6268.
llvm-svn: 96084
to the driver, and support it in CodeGenOptsToArgs(). Note that this changes
the default behavior of clang -cc1 to always run the verifier.
llvm-svn: 96077
we'd add an offset from the spelling location space to the
instantiation location, which doesn't make sense and would
lead up to the text diagnostics crashing when presented with
non-sensical locations.
This fixes rdar://7597492, a crash on 255.vortex.
llvm-svn: 96004
worth asserting about in this code: 1) if the source range
is bogus (begin loc after end loc), and 2) if the client
is trying to highlight a range that is purely whitespace.
It is possible to just silently ignore #2, but it seems like
it is always a bug, so lets keep asserting on this condition,
but with a better assert message.
llvm-svn: 95998
guard macro is already defined for the first occurrence of the
header. If it is, the body will be skipped and not be properly
analyzed for the include guard optimization.
llvm-svn: 95972
headers, where malloc (and many other libc functions) are declared
with empty throw specifications, e.g.,
extern void *malloc (__SIZE_TYPE__ __size) throw () __attribute__
((__malloc__)) ;
The C++ standard doesn't seem to allow this, and redeclaring malloc as
the standard permits (as follows) resulted in Clang (rightfully!)
complaining about mis-matched exception specifications.
void *malloc(size_t size);
We work around this by silently propagating an empty throw
specification "throw()" from a function with C linkage declared in a
system header to a redeclaration that has no throw specifier.
Ick.
llvm-svn: 95969
(1) When no 'clang' is found with 'scan-build', remember the one from
the path as scan-build sees it, not the build system. This prevents
us from finding different clangs during the build.
(2) Don't set LDPLUSPLUS when running xcodebuild; instead rely on the
clang driver to do the right thing.
llvm-svn: 95943
order of constructor arguments (all block API specific). This was exposed only in
a large block literal expression in a large file where PtrSet container size
execceded its limit and required reallocation. Fixes radar 7638294
llvm-svn: 95936
variable type, we can (and should) still check for completeness of the
variable's type. Do so, to work around an assertion that shows up in
Boost's shared_ptr.
llvm-svn: 95934
incompatibility and show where the structural differences are. For
example:
struct1.c:36:8: warning: type 'struct S7' has incompatible definitions
in different translation units
struct S7 { int i : 8; unsigned j : 8; } x7;
^
struct1.c:36:33: note: bit-field 'j' with type 'unsigned int' and length 8 here
struct S7 { int i : 8; unsigned j : 8; } x7;
^
struct2.c:33:33: note: bit-field 'j' with type 'unsigned int' and length 16 here
struct S7 { int i : 8; unsigned j : 16; } x7;
^
There are a few changes to make this work:
- ASTImporter now has only a single Diagnostic object, not multiple
diagnostic objects. Otherwise, having a warning/error printed via
one Diagnostic and its note printed on the other Diagnostic could
cause the note to be suppressed.
- Implemented import functionality for IntegerLiteral (along with
general support for statements and expressions)
llvm-svn: 95900
their spelling location. This prevents warnings from being swallowed just
because the caret is on the first parenthesis in, say, NULL.
This is an experiment; the risk is that there might be a substantial number
of system headers which #define symbols to expressions which inherently cause
warnings. My theory is that that's rare enough that it can be worked
around case-by-case, and that producing useful warnings around NULL is worth
it. But I'm willing to accept that I might be empirically wrong.
llvm-svn: 95870
Enhance the printf format string checking when using the format
specifier flags ' ', '0', '+' with the 'p' or 's' conversions (since
they are nonsensical and undefined). This is similar to GCC's
checking.
Also warning when a precision is used with the 'p' conversin
specifier, since it has no meaning.
llvm-svn: 95869
Right now, it's off by default but can be tested by passing -fdump-vtable-layouts to clang -cc1. This option will cause all vtables that will normally be emitted as part of codegen to also be dumped using the new layout code.
I've also added a very simple new vtable layout test case.
llvm-svn: 95865
array associated with NonNullAttr. This fixes yet another leak when
ASTContext uses a BumpPtrAllocator.
Fixes: <rdar://problem/7637150>
llvm-svn: 95863
storing the set of StoredDeclsMaps in an internal vector of void*.
This isn't an ideal solution, but for the time being this fixes a
major memory leak with these DenseMaps not being freed.
Fixes: <rdar://problem/7634755>
llvm-svn: 95861
array allocated using the allocator in ASTContext. This addresses
these strings getting leaked when using a BumpPtrAllocator (in
ASTContext).
Fixes: <rdar://problem/7636765>
llvm-svn: 95853
we would just leak them all over the place, with no clear ownership of
these objects at all. AttributeList objects would get leaked on both
error and non-error paths.
Note: I introduced the usage of llvm::OwningPtr<AttributeList> to
manage these objects, which is particularly useful for methods with
multiple return sites. In at least one method I used them even when
they weren't strictly necessary because it clarified the ownership
semantics and made the code easier to read. Should the excessive
'take()' and 'reset()' calls become a performance issue we can always
re-evaluate.
Note+1: I believe I have not introduced any double-frees, but it would
be nice for someone to review this.
This fixes <rdar://problem/7635046>.
llvm-svn: 95847
attribute, so it uses Anton's new target-specific attribute support. It's
supposed to ensure that the stack is 16-byte aligned, but since necessary
support is lacking from LLVM, this is a no-op for now.
llvm-svn: 95820
merged with variables of constant array types. Also, make sure that we
call DiagnosticClient's BeginSourceFile/EndSourceFile, so that it has
a LangOptions to work with.
llvm-svn: 95782
conversions. Fix an access-control bug where privileges were not considered
at intermediate points along the inheritance path. Prepare for friends.
llvm-svn: 95775
into another AST, including their include history. Here's an example
error that involves a conflict merging a variable with different types
in two translation units (diagnosed in the third AST context into
which everything is merged).
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var2.c:3:5:
error: external variable 'x2' declared with incompatible types in
different translation units ('int' vs. 'double')
int x2;
^
In file included from
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var1.c:3:
/Volumes/Data/dgregor/Projects/llvm/tools/clang/test/ASTMerge/Inputs/var1.h:1:8:
note: declared here with type 'double'
double x2;
^
Although we maintain include history, we do not maintain macro
instantiation history across a merge. Instead, we map down to the
spelling location (for now!).
llvm-svn: 95732
that we get readable diagnostics such as:
error: external variable 'x1' declared with incompatible types in
different translation units ('double *' vs. 'float **')
However, there is no translation of source locations, yet.
llvm-svn: 95704
This is a non-fragile-abi feature only. Since it
breaks existing code, it is currently placed under
-fobjc-nonfragile-abi2 option for test purposes only
until further notice. WIP.
llvm-svn: 95685
NULL, not the store, to determine if a lookup succeeded. The store
can be null if it contained no bindings. This fixes a false positive
reported to me by a user of the analyzer.
llvm-svn: 95679
Sema::ActOnUninitializedDecl over to InitializationSequence (with
default initialization), eliminating redundancy. More importantly, we
now check that a const definition in C++ has an initilizer, which was
an #if 0'd code for many, many months. A few other tweaks were needed
to get everything working again:
- Fix all of the places in the testsuite where we defined const
objects without initializers (now that we diagnose this issue)
- Teach instantiation of static data members to find the previous
declaration, so that we build proper redeclaration
chains. Previously, we had the redeclaration chain but built it
too late to be useful, because...
- Teach instantiation of static data member definitions not to try
to check an initializer if a previous declaration already had an
initializer. This makes sure that we don't complain about static
const data members with in-class initializers and out-of-line
definitions.
- Move all of the incomplete-type checking logic out of
Sema::FinalizeDeclaratorGroup; it makes more sense in
ActOnUnitializedDecl.
There may still be a few places where we can improve these
diagnostics. I'll address that as a separate commit.
llvm-svn: 95657
- This fixes many many more places than the test case, but my feeling is we need to audit alignment systematically so I'm not inclined to try hard to test the individual fixes in this patch. If this bothers you, patches welcome!
PR6240.
llvm-svn: 95648
At the moment the inlinehint attribute is ignored by the Inliner unless you
pass a -respect-inlinehint option. This will soon be the default.
The inlinehint attribute is set if the inline keyword is explicitly specified
on any declaration.
llvm-svn: 95623
non-type template parameter that has reference type, augment the
qualifiers of the non-type template argument with those of the
referenced type. Fixes PR6250.
llvm-svn: 95607
The standard actually says that such references should have internal linkage,
but gcc doesn't do that, so we probably can't get away with it.
llvm-svn: 95577
attribute properly and avoid bogus warning. This is
an objective-c fix only. objective-c++ follows different code
pass and requires separate fix (which will come at a later time).
Fixes radar 7214820.
llvm-svn: 95571
deduction. This requires refactoring the deduction to have access to the Sema
object instead of merely the ASTContext. Still leaves something to be desired
due to poor source location.
Fixes PR6257 and half of PR6259.
llvm-svn: 95528
params. Don't insert addrof operations when matching against a pointer;
array/function conversions should take care of this for us, assuming the
argument type-checked in the first place. Add a fixme where we seem to be
using a less-restrictive reference type than we should.
Fixes PR 6249.
llvm-svn: 95495
over to VarDecl::isThisDeclarationADefinition(), which handles
variables declared with linkage specifications better (among other
things). CMake 2.9 (from CVS) now builds with clang++ and is somewhat
functional.
llvm-svn: 95486
type-checking within a template definition. In this case, the
"instantiated" declaration is just the declaration itself, found
within the current instantiation. Fixes PR6239.
llvm-svn: 95442
follows (as conservatively as possible) gcc's current behavior: attributes
written on return types that don't apply there are applied to the function
instead, etc. Only parse CC attributes as type attributes, not as decl attributes;
don't accepet noreturn as a decl attribute on ValueDecls, either (it still
needs to apply to other decls, like blocks). Consistently consume CC/noreturn
information throughout codegen; enforce this by removing their default values
in CodeGenTypes::getFunctionInfo().
llvm-svn: 95436
when instantiating the declaration of a member template:
- Only check if the have a template template argument at a specific position
when we already know that we have template arguments at that level;
otherwise, we're substituting for a level-reduced template template
parameter.
- When trying to find an instantiated declaration for a template
template parameter, look into the instantiated scope. This was a
typo, where we had two checks for TemplateTypeParmDecl, one of
which should have been a TemplateTemplateParmDecl.
With these changes, tramp3d-v4 passes -fsyntax-only.
llvm-svn: 95421
declaration, we can end up with template-id annotation tokens for
types that have not been converted into type annotation tokens. When
this is the case, translate the template-id into a type and parse as
an expression.
llvm-svn: 95404
one context and import them into another context, merging them
according to language-specific rules. This is a skeleton. It doesn't
work, it isn't testable, but I want it in version control.
llvm-svn: 95395
need to deal with aggregates specially; this is consistent with the rest of IRgen.
Also, simplify EmitParmDecl and don't worry about using Decl::getNameAsString.
llvm-svn: 95393
context. This happens fairly rarely (which is why we got away with
this bug). Fixes PR6184, where we skipped over the template parameter
scope while tentatively parsing.
llvm-svn: 95376
of a C++ record. Exposed a lot of problems where various routines were
silently doing The Wrong Thing (or The Acceptable Thing in The Wrong Order)
when presented with a non-definition. Also cuts down on memory usage.
llvm-svn: 95330
ton of potential crashes of the same kind. The fundamental problem is
that type creation was following a dangerous pattern when using its
FoldingSets:
1) Use FindNodeOrInsertPos to see if the type is available
2) If not, and we aren't looking at a canonical type, build the
canonical type
3) Build and insert the new node into the FoldingSet
The problem here is that building the canonical type can, in very rare
circumstances, force the hash table inside the FoldingSet to
reallocate. That invalidates the insertion position we computed in
step 1, and in step 3 we end up inserting the new node into the wrong
place. BOOM!
I've audited all of ASTContext, fixing this problem everywhere I found
it. The vast majority of wrong code was C++-specific (and *ahem*
written by me), so I also audited other major folding sets in the C++
code (e.g., template specializations), but found no other instances of
this problem.
llvm-svn: 95315
With this fix, and the other fixes committed today a make check-all with a clang-built LLVM now gives:
Expected Passes : 6933
Expected Failures : 46
Unsupported Tests : 40
Unexpected Failures: 27
which means that we pass 99.96% of all tests :) The resulting 27 tests are all LLVMC tests and seem to be because of differences in the clang and gcc drivers.
llvm-svn: 95313
template parameter, perform array/function decay (if needed), take the
address of the argument (if needed), perform qualification conversions
(if needed), and remove any top-level cv-qualifiers from the resulting
expression. Fixes PR6226.
llvm-svn: 95309
direct bit manipulation. This is is less error prone, and fixes a bug
in the handling of the LeadingZeroes flag as pointed out by Cristian
Draghici.
llvm-svn: 95298
a different return type. While we don't emit any errors (yet), at
least we avoid cases where we might crash because of an assertion
failure later on (when the return type differs from what is expected).
llvm-svn: 95268
void f(int a = 10) {
return a;
}
would always return 10, regardless of the passed in argument.
This fixes another 600 test failures. We're now down to only 137 failures!
llvm-svn: 95262
doing so invalidates the file guard optimization and is not
in the spirit of "#if 0" because it is supposed to completely
skip everything, even if it isn't lexically valid. Patch by
Abramo Bagnara!
llvm-svn: 95253
prevent a crash on templates when looking for an existing declaration of the
predefined global operators. This fixes PR5918.
Added an easy test case for the overload handling, but testing the crash is
a bit trickier. Created a new test that can use multiple runs with a define to
trigger which test case is used so we can test this type of issue.
llvm-svn: 95220
that is in an anonymous namespace, give that function or variable
internal linkage.
This change models an oddity of the C++ standard, where names declared
in an anonymous namespace have external linkage but, because anonymous
namespace are really "uniquely-named" namespaces, the names cannot be
referenced from other translation units. That means that they have
external linkage for semantic analysis, but the only sensible
implementation for code generation is to give them internal
linkage. We now model this notion via the UniqueExternalLinkage
linkage type. There are several changes here:
- Extended NamedDecl::getLinkage() to produce UniqueExternalLinkage
when the declaration is in an anonymous namespace.
- Added Type::getLinkage() to determine the linkage of a type, which
is defined as the minimum linkage of the types (when we're dealing
with a compound type that is not a struct/class/union).
- Extended NamedDecl::getLinkage() to consider the linkage of the
template arguments and template parameters of function template
specializations and class template specializations.
- Taught code generation to rely on NamedDecl::getLinkage() when
determining the linkage of variables and functions, also
considering the linkage of the types of those variables and
functions (C++ only). Map UniqueExternalLinkage to internal
linkage, taking out the explicit checks for
isInAnonymousNamespace().
This fixes much of PR5792, which, as discovered by Anders Carlsson, is
actually the reason behind the pass-manager assertion that causes the
majority of clang-on-clang regression test failures. With this fix,
Clang-built-Clang+LLVM passes 88% of its regression tests (up from
67%). The specific numbers are:
LLVM:
Expected Passes : 4006
Expected Failures : 32
Unsupported Tests : 40
Unexpected Failures: 736
Clang:
Expected Passes : 1903
Expected Failures : 14
Unexpected Failures: 75
Overall:
Expected Passes : 5909
Expected Failures : 46
Unsupported Tests : 40
Unexpected Failures: 811
Still to do:
- Improve testing
- Check whether we should allow the presence of types with
InternalLinkage (in addition to UniqueExternalLinkage) given
variables/functions internal linkage in C++, as mentioned in
PR5792.
- Determine how expensive the getLinkage() calls are in practice;
consider caching the result in NamedDecl.
- Assess the feasibility of Chris's idea in comment #1 of PR5792.
llvm-svn: 95216
RegionStoreManager::InvalidateRegions() by adjusting the worklist to
iterate over BindingKeys instead of MemRegions. We also only need to
do the actual invalidation work on base regions, and for non-base
regions just blow away their bindings.
llvm-svn: 95200
- Requires backend support, which only exists for i386--darwin currently.
No 'as' required:
--
ddunbar@ozzy:tmp$ cat t.c
int main() { return 42; }
ddunbar@ozzy:tmp$ clang -m32 -integrated-as t.c
ddunbar@ozzy:tmp$ ./a.out; echo $?
42
ddunbar@ozzy:tmp$
--
The random extra whitespace is how you know its working! :)
llvm-svn: 95194
not build a subregion map and instead do a single scan of the store.
This is done by building "region clusters" that represent the
collection of regions that have the same base region. Invalidating
any region in a cluster means that they all should get invalidated.
This change brought out a point that Zhongxing mentioned to me
offline: the flattened memory binding has issues distinguishing
between direct and default bindings. For example, setting the default
value for an entire struct is the same as binding to the first
element. To address this problem, I moved the binding "tag" (Direct
or Default) from BindingVal to BdingKey (and removed BindingVal
entirely). This requires us to do double lookups in some cases; and
there is still much more cleanup that can be done.
This change produced a noticeable speedup when analyzing sqlite3 (a
reduction of 4% in running time).
llvm-svn: 95193
realize that CXXConstructExpr is always implicit, so we should just
return its argument (if there is only one) rather than directly
invoking the constructor.
llvm-svn: 95192
- Don't use GlobalAliases with non-0 GEPs (GNU runtime) - this was unsupported and LLVM will be generating errors if you do it soon. This also simplifies the code generated by the GNU runtime a bit.
- Make GetSelector() return a constant (GNU runtime), not a load of a store of a constant.
- Recognise @selector() expressions as valid static initialisers (as GCC does).
- Add methods to GCObjCRuntime to emit selectors as constants (needed for using @selector() expressions as constants. These need implementing for the Mac runtimes - I couldn't figure out how to do this, they seem to require a load.
- Store an ObjCMethodDecl in an ObjCSelectorExpr so that we can get at the type information for the selector. This is needed for generating typed selectors from @selector() expressions (as GCC does). Ideally, this information should be stored in the Selector, but that would be an invasive change. We should eventually add checks for common uses of @selector() expressions. Possibly adding an attribute that can be applied to method args providing the types of a selector so, for example, you'd do something like this:
- (id)performSelector: __attribute__((selector_types(id, SEL, id)))(SEL)
withObject: (id)object;
Then, any @selector() expressions passed to the method will be check to ensure that it conforms to this signature. We do this at run time on the GNU runtime already, but it would be nice to do it at compile time on all runtimes.
- Made @selector() expressions emit type info if available and the runtime supports it.
Someone more familiar with the Mac runtime needs to implement the GetConstantSelector() function in CGObjCMac. This currently just assert()s.
llvm-svn: 95189
lvalue-to-rvalue conversion adjusts lvalues of qualified, non-class
type to rvalue expressions of the unqualified variant of that
type. For example, given:
const int i;
(void)(i + 17);
the lvalue-to-rvalue conversion for the subexpression "i" will turn it
from an lvalue expression (a DeclRefExpr) with type 'const int' into
an rvalue expression with type 'int'. Both C and C++ mandate this
conversion, and somehow we've slid through without implementing it.
We now have both DefaultFunctionArrayConversion and
DefaultFunctionArrayLvalueConversion, and which gets used depends on
whether we do the lvalue-to-rvalue conversion or not. Generally, we do
the lvalue-to-rvalue conversion, but there are a few notable
exceptions:
- the left-hand side of a '.' operator
- the left-hand side of an assignment
- a C++ throw expression
- a subscript expression that's subscripting a vector
Making this change exposed two issues with blocks:
- we were deducing const-qualified return types of non-class type
from a block return, which doesn't fit well
- we weren't always setting the known return type of a block when it
was provided with the ^return-type syntax
Fixes the current Clang-on-Clang compile failure and PR6076.
llvm-svn: 95167
WHAT!?!
It turns out that Type::isPromotableIntegerType() was not considering
enumeration types to be promotable, so we would never do the
promotion despite having properly computed the promotion type when the
enum was defined. Various operations on values of enum type just
"worked" because we could still compute the integer rank of an enum
type; the oddity, however, is that operations such as "add an enum and
an unsigned" would often have an enum result type (!). The bug
actually showed up as a spurious -Wformat diagnostic
(<rdar://problem/7595366>), but in theory it could cause miscompiles.
In this commit:
- Enum types with a promotion type of "int" or "unsigned int" are
promotable.
- Tweaked the computation of promotable types for enums
- For all of the ABIs, treat enum types the same way as their
underlying types (*not* their promotion types) for argument passing
and return values
- Extend the ABI tester with support for enumeration types
llvm-svn: 95117
dyncast is just due to \r\n newline interaction w/ regexps. The remap-load.c
failure is a bit stranger (the end of the extent is on the next line), but I
don't care to investigate.
llvm-svn: 95071
side effect, this also fixes some cases on Windows where the file would end up
on a different drive, because tmpnam doesn't include the drive component. PR3837
strikes again.
llvm-svn: 95067
arguments. Fix a bug where incomplete explicit specializations were being
passed through as legitimate. Fix a bug where the absence of an explicit
specialization in an overload set was causing overall deduction to fail.
Fixes PR6191.
llvm-svn: 95052
This is to address a serious performance problem observed when running
'clang -fsyntax-only' on really broken source files. In one case,
repeatedly calling CorrectTypo() caused one source file to be rejected
after 2 minutes instead of 1 second.
This patch causes typo correction to take neglible time on that file
while still providing correction results for the first 20 cases. I
felt this was a reasonable number for moderately broken source files.
I don't claim this is the best solution. Comments welcome. It is
necessary for us to address this issue because it is a serious
performance problem.
llvm-svn: 95049
forgetting a ';' at the end of a struct. For something like:
class c {
}
void foo() {}
we now produce:
t.cc:3:2: error: expected ';' after class
}
^
;
instead of:
t.cc:4:1: error: cannot combine with previous 'class' declaration specifier
void foo() {}
^
t.cc:2:7: error: 'class c' can not be defined in the result type of a function
class c {
^
GCC produces:
t.cc:4: error: new types may not be defined in a return type
t.cc:4: note: (perhaps a semicolon is missing after the definition of ‘c’)
t.cc:4: error: two or more data types in declaration of ‘foo’
I *think* I got the follow set right, but if I forgot anything, we'll start
getting spurious "expected ';' after class" errors, let me know if you see
any.
llvm-svn: 95042
t.cc:4:3: error: expected ';' at end of declaration list
int y;
^
t.cc:6:1: error: expected ';' at end of declaration list
};
^
After:
t.cc:3:8: error: expected ';' at end of declaration list
int x
^
;
t.cc:5:8: error: expected ';' at end of declaration list
int z
^
;
llvm-svn: 95039
t.c:4:3: error: expected ';' at end of declaration list
int y;
^
t.c:4:8: warning: extra ';' inside a struct or union
int y;
^
t.c:6:1: warning: expected ';' at end of declaration list
};
^
After:
t.c:3:8: error: expected ';' at end of declaration list
int x // expected-error {{expected ';' at end of declaration list}}
^
;
t.c:5:8: warning: expected ';' at end of declaration list
int z
^
;
llvm-svn: 95038
- In C++, prior to the closing '}', set the type of enumerators
based on the type of their initializer. Don't perform unary
conversions on the enumerator values.
- In C++, handle overflow when an enumerator has no initializer and
its value cannot be represented in the type of the previous
enumerator.
- In C, handle overflow more gracefully, by complaining and then
falling back to the C++ rules.
- In C, if the enumerator value is representable in an int, convert the
expression to the type 'int'.
Fixes PR5854 and PR4515.
llvm-svn: 95031
by setting the section of the generated global. This is an
optimization done by the code generator, and the code being
removed didn't handle the case when the string contained an
embedded nul (which the code generator does correctly
handle). This is rdar://7589850
llvm-svn: 95003
when checking if the format specifier matches the type of the data
argument and the length modifier indicates the data type is 'char' or
'short'.
llvm-svn: 94992
change.
PS: I'm under the impression formatting-only patches don't need pre-commit
review, but feel free to yell at me if I should post these first! =D
llvm-svn: 94956
arguments. This both prevents meaningless checks on these arguments and ensures
that they are represented as an expression by the instantiation.
Cleaned up and added standard text to the relevant test case. Also started
adding tests for *rejected* cases. At least one FIXME here where (I think) we
allow something we shouldn't. More to come in the area of rejecting crazy
arguments with decent diagnostics. Suggestions welcome for still better
diagnostics on these errors!
llvm-svn: 94953
(necessarily simultaneous) changes:
- CXXBaseOrMemberInitializer now contains only a single initializer
rather than a set of initialiation arguments + a constructor. The
single initializer covers all aspects of initialization, including
constructor calls as necessary but also cleanup of temporaries
created by the initializer (which we never handled
before!).
- Rework + simplify code generation for CXXBaseOrMemberInitializers,
since we can now just emit the initializer as an initializer.
- Switched base and member initialization over to the new
initialization code (InitializationSequence), so that it
- Improved diagnostics for the new initialization code when
initializing bases and members, to match the diagnostics produced
by the previous (special-purpose) code.
- Simplify the representation of type-checked constructor initializers in
templates; instead of keeping the fully-type-checked AST, which is
rather hard to undo at template instantiation time, throw away the
type-checked AST and store the raw expressions in the AST. This
simplifies instantiation, but loses a little but of information in
the AST.
- When type-checking implicit base or member initializers within a
dependent context, don't add the generated initializers into the
AST, because they'll look like they were explicit.
- Record in CXXConstructExpr when the constructor call is to
initialize a base class, so that CodeGen does not have to infer it
from context. This ensures that we call the right kind of
constructor.
There are also a few "opportunity" fixes here that were needed to not
regress, for example:
- Diagnose default-initialization of a const-qualified class that
does not have a user-declared default constructor. We had this
diagnostic specifically for bases and members, but missed it for
variables. That's fixed now.
- When defining the implicit constructors, destructor, and
copy-assignment operator, set the CurContext to that constructor
when we're defining the body.
llvm-svn: 94952