Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
llvm-svn: 233938
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.
Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.
llvm-svn: 226157
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
llvm-svn: 226078
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
We would attempt to fold away a call instruction which had been marked
overdefined. However, it's not valid to transition to constant from
overdefined.
This fixes PR21512.
llvm-svn: 221513
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
llvm-svn: 201827
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
llvm-svn: 200892
debug statements to add a missing newline. Also canonicalize to '\n' instead of
"\n"; the latter calls a function with a loop the former does not.
llvm-svn: 184897
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
llvm-svn: 168972
Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default.
Added some notes relative to case iterators.
llvm-svn: 152532
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
llvm-svn: 152297
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
lead to it trying to re-mark a value marked as a constant with a different value. It also appears to trigger very rarely.
Fixes PR11357.
llvm-svn: 144352
The landingpad instruction is required in the landing pad block. Because we're
not deleting terminating instructions, the invoke may still jump to here (see
Transforms/SCCP/2004-11-16-DeadInvoke.ll). Remove all uses of the landingpad
instruction, but keep it around until code-gen can remove the basic block.
llvm-svn: 138890
making random bad assumptions about instructions which are not explicitly listed.
Includes fix for rdar://9956541, a version of "undef ^ undef should return
0 because it's easier than arguing with users".
llvm-svn: 137777
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
llvm-svn: 137501
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
llvm-svn: 136589