Commit Graph

3582 Commits

Author SHA1 Message Date
Diego Caballero 96891f0418 Reland: [mlir][Vector][Affine] Improve affine vectorizer algorithm
This patch replaces the root-terminal vectorization approach implemented in the
Affine vectorizer with a topological order approach that vectorizes all the
operations within the target loop nest. These are the most important changes
introduced by the new algorithm:
  * Removed tracking of root and terminal ops. Existing vectorization
    functionality is preserved and extended so that loop nests without
    root-terminal chains can be vectorized.
  * Vectorizing a loop nest now only requires a single topological traversal.
  * A new vector loop nest is incrementally built along the vectorization
    process. The original scalar loop is kept intact. No cloning guard is needed
    to recover the scalar loop if vectorization fails. This approach also
    simplifies the challenging task of replacing a loop operation amid the
    vectorization process without invalidating the analysis information that
    depends on the original loop.
  * Vectorization of specific operations has been implemented as independent,
    preparing them to be moved to a potential vectorization interface.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D97442
2021-03-12 00:19:50 +02:00
River Riddle 31bb8efd69 [mlir][StorageUniquer] Properly call the destructor on non-trivially destructible storage instances
This allows for storage instances to store data that isn't uniqued in the context, or contain otherwise non-trivial logic, in the rare situations that they occur. Storage instances with trivial destructors will still have their destructor skipped. A consequence of this is that the storage instance definition must be visible from the place that registers the type.

Differential Revision: https://reviews.llvm.org/D98311
2021-03-11 11:35:32 -08:00
Alex Zinenko 3ba14fa0ce [mlir] Introduce data layout modeling subsystem
Data layout information allows to answer questions about the size and alignment
properties of a type. It enables, among others, the generation of various
linear memory addressing schemes for containers of abstract types and deeper
reasoning about vectors. This introduces the subsystem for modeling data
layouts in MLIR.

The data layout subsystem is designed to scale to MLIR's open type and
operation system. At the top level, it consists of attribute interfaces that
can be implemented by concrete data layout specifications; type interfaces that
should be implemented by types subject to data layout; operation interfaces
that must be implemented by operations that can serve as data layout scopes
(e.g., modules); and dialect interfaces for data layout properties unrelated to
specific types. Built-in types are handled specially to decrease the overall
query cost.

A concrete default implementation of these interfaces is provided in the new
Target dialect. Defaults for built-in types that match the current behavior are
also provided.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D97067
2021-03-11 16:54:47 +01:00
Arpith C. Jacob b4a516cc43 [mlir] Add LLVM loop codegen options to control software pipelining
Support specifying the II and disabling pipelining.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D98420
2021-03-11 16:46:44 +01:00
Tres Popp 25a20b8aa6 [mlir] Correct verifyCompatibleShapes
verifyCompatibleShapes is not transitive. Create an n-ary version and
update SameOperandShapes and SameOperandAndResultShapes traits to use
it.

Differential Revision: https://reviews.llvm.org/D98331
2021-03-11 13:04:10 +01:00
Julian Gross 2aef202981 [mlir] Fix invalid hoisting of dependent allocs in buffer hoisting pass.
Buffer hoisting moves allocs upwards although it has dependency within its
nested region. This patch fixes this issue.

https://bugs.llvm.org/show_bug.cgi?id=49142

Differential Revision: https://reviews.llvm.org/D98248
2021-03-11 11:46:16 +01:00
Christian Sigg bafe418d12 [mlir] Change test-gpu-to-cubin to derive from SerializeToBlobPass
Clean-up after D98279, remove one call to createConvertGPUKernelToBlobPass().

Depends On D98203

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D98360
2021-03-11 10:42:20 +01:00
Frederik Gossen b975e3b5aa [MLIR] Add canoncalization for `shape.is_broadcastable`
Canonicalize `is_broadcastable` to constant true if fewer than 2 unique shape
operands. Eliminate redundant operands, otherwise.

Differential Revision: https://reviews.llvm.org/D98361
2021-03-11 10:10:34 +01:00
Christian Sigg 2224221fb3 [mlir] Add NVVM to CUBIN conversion to mlir-opt
If MLIR_CUDA_RUNNER_ENABLED, register a 'gpu-to-cubin' conversion pass to mlir-opt.

The next step is to switch CUDA integration tests from mlir-cuda-runner to mlir-opt + mlir-cpu-runner and remove mlir-cuda-runner.

Depends On D98279

Reviewed By: herhut, rriddle, mehdi_amini

Differential Revision: https://reviews.llvm.org/D98203
2021-03-11 10:07:11 +01:00
Matthias Springer c40e0d7609 [mlir][AVX512] Implement sparse vector dot product integration test.
This test operates on two hardware-vector-sized vectors and utilizes vp2intersect and mask.compress.

PHAB_REVIEW=D98099
2021-03-11 13:00:17 +09:00
Emilio Cota c0891706bc [mlir] Add polynomial approximation for math::Log2
```
name                     old cpu/op  new cpu/op  delta
BM_mlir_Log2_f32/10       134ns ±15%    45ns ± 4%  -66.39%  (p=0.000 n=20+17)
BM_mlir_Log2_f32/100     1.03µs ±16%  0.12µs ±10%  -88.78%  (p=0.000 n=20+18)
BM_mlir_Log2_f32/1k      10.3µs ±16%   0.7µs ± 5%  -93.24%  (p=0.000 n=20+17)
BM_mlir_Log2_f32/10k      104µs ±15%     7µs ±14%  -93.25%  (p=0.000 n=20+20)
BM_eigen_s_Log2_f32/10   95.3ns ±17%  90.9ns ± 6%     ~     (p=0.228 n=20+18)
BM_eigen_s_Log2_f32/100   907ns ± 3%   911ns ± 6%     ~     (p=0.539 n=16+20)
BM_eigen_s_Log2_f32/1k   9.88µs ± 4%  9.85µs ± 3%     ~     (p=0.790 n=16+17)
BM_eigen_s_Log2_f32/10k   105µs ±10%   110µs ±16%     ~     (p=0.459 n=16+20)
BM_eigen_v_Log2_f32/10   32.5ns ±31%  33.9ns ±14%   +4.31%  (p=0.028 n=17+20)
BM_eigen_v_Log2_f32/100   176ns ± 8%   180ns ± 7%   +2.19%  (p=0.045 n=16+17)
BM_eigen_v_Log2_f32/1k   1.44µs ± 4%  1.50µs ± 9%   +3.91%  (p=0.001 n=16+17)
BM_eigen_v_Log2_f32/10k  14.5µs ±10%  15.0µs ± 8%   +3.92%  (p=0.002 n=16+19)
```

Reviewed By: ezhulenev

Differential Revision: https://reviews.llvm.org/D98282
2021-03-10 14:49:22 -08:00
Weiwei Li 619c1505f9 [mlir][spirv] Define spv.Image Operation
co-authered-by: Alan Liu <alanliu.yf@gmail.com>

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D98270
2021-03-10 15:48:04 -05:00
Alex Zinenko 79da91c59a Revert "[mlir][Vector][Affine] Improve affine vectorizer algorithm"
This reverts commit 95db7b4aea.

This breaks vectorize_2d.mlir and vectorize_3d.mlir test under ASAN (use
after free).
2021-03-10 20:25:49 +01:00
Alex Zinenko ed715536f1 Revert "[mlir][Affine][Vector] Add initial support for 'iter_args' to Affine vectorizer."
This reverts commit 77a9d1549f.

Parent commit is broken.
2021-03-10 20:25:32 +01:00
Diego Caballero 77a9d1549f [mlir][Affine][Vector] Add initial support for 'iter_args' to Affine vectorizer.
This patch adds support for vectorizing loops with 'iter_args' when those loops
are not a vector dimension. This allows vectorizing outer loops with an inner
'iter_args' loop (e.g., reductions). Vectorizing scenarios where 'iter_args'
loops are vector dimensions would require more work (e.g., analysis,
generating horizontal reduction, etc.) not included in this patch.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D97892
2021-03-10 20:40:21 +02:00
Diego Caballero 95db7b4aea [mlir][Vector][Affine] Improve affine vectorizer algorithm
This patch replaces the root-terminal vectorization approach implemented in the
Affine vectorizer with a topological order approach that vectorizes all the
operations within the target loop nest. These are the most important changes
introduced by the new algorithm:
  * Removed tracking of root and terminal ops. Existing vectorization
    functionality is preserved and extended so that loop nests without
    root-terminal chains can be vectorized.
  * Vectorizing a loop nest now only requires a single topological traversal.
  * A new vector loop nest is incrementally built along the vectorization
    process. The original scalar loop is kept intact. No cloning guard is needed
    to recover the scalar loop if vectorization fails. This approach also
    simplifies the challenging task of replacing a loop operation amid the
    vectorization process without invalidating the analysis information that
    depends on the original loop.
  * Vectorization of specific operations has been implemented as independent,
    preparing them to be moved to a potential vectorization interface.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D97442
2021-03-10 20:29:58 +02:00
Alex Zinenko a776942ba1 [mlir] squash LLVM_AVX512 dialect into AVX512
The dialect separation was introduced to demarkate ops operating in different
type systems. This is no longer the case after the LLVM dialect has migrated to
using built-in vector types, so the original reason for separation is no longer
valid. Squash the two dialects into one.

The code size decrease isn't quite large: the ops originally in LLVM_AVX512 are
preserved because they match LLVM IR intrinsics specialized for vector element
bitwidth. However, it is still conceptually beneficial to have only one
dialect. I originally considered to use Tablegen multiclasses to define both
the type-polymorphic op and its two intrinsic-related instantiations, but
decided against it given both the complexity of the required Tablegen input and
its dissimilarity with the rest of ODS-defined ops, both potentially resulting
in very poor maintainability.

Depends On D98327

Reviewed By: nicolasvasilache, springerm

Differential Revision: https://reviews.llvm.org/D98328
2021-03-10 13:07:26 +01:00
Vladislav Vinogradov f3bf5c053b [mlir] Model MemRef memory space as Attribute
Based on the following discussion:
https://llvm.discourse.group/t/rfc-memref-memory-shape-as-attribute/2229

The goal of the change is to make memory space property to have more
expressive representation, rather then "magic" integer values.

It will allow to have more clean ASM form:

```
gpu.func @test(%arg0: memref<100xf32, "workgroup">)

// instead of

gpu.func @test(%arg0: memref<100xf32, 3>)
```

Explanation for `Attribute` choice instead of plain `string`:

* `Attribute` classes allow to use more type safe API based on RTTI.
* `Attribute` classes provides faster comparison operator based on
  pointer comparison in contrast to generic string comparison.
* `Attribute` allows to store more complex things, like structs or dictionaries.
  It will allows to have more complex memory space hierarchy.

This commit preserve old integer-based API and implements it on top
of the new one.

Depends on D97476

Reviewed By: rriddle, mehdi_amini

Differential Revision: https://reviews.llvm.org/D96145
2021-03-10 12:57:27 +03:00
Hanhan Wang d5d4fb635e [mlir][linalg] Add support for using scalar attributes in TC ops.
Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D97876
2021-03-10 01:51:12 -08:00
Mehdi Amini 75f3f77805 Fix MLIR test post 890afad954 2021-03-09 23:30:51 +00:00
River Riddle 4a7aed4ee7 [mlir][IR] Add a new SymbolUserMap class
This class provides efficient implementations of symbol queries related to uses, such as collecting the users of a symbol, replacing all uses, etc. This provides similar benefits to use related queries, as SymbolTableCollection did for lookup queries.

Differential Revision: https://reviews.llvm.org/D98071
2021-03-09 15:07:52 -08:00
Mehdi Amini cd9a69289c Fix LLVM Dialect LoopOptionsAttr round-tripping: the keywords were missing in the output
This indicated some missing test coverage, which are now added to the
roundtrip test.
2021-03-09 22:00:22 +00:00
Mehdi Amini 79f736c150 Switch generatedTypeParser/generatedAttributeParser to return an OptionalParseResult
This allows the caller to distinguish between a parse error or an
unmatched keyword. It fixes the redundant error that was emitted by the
caller when the generated parser would fail.

Differential Revision: https://reviews.llvm.org/D98162
2021-03-09 19:43:45 +00:00
Mehdi Amini 8205c1a90a Rework LLVM Dialect LoopOptions attribute
Instead of storing an array of LoopOpt attributes, which were just
wrapping std::pair<enum, int> anyway, we can have an attribute storing
a sorted ArrayRef<std::pair<enum, int>> as a single unit. This improves
here the textual format and the general API. Note that we're limiting
the options to fit into an int64_t by design, but this isn't a new
constraint.

Building the LoopOptions attribute is likely worth a specific builder
for efficient reason, that'll be the subject of a future patch.

Differential Revision: https://reviews.llvm.org/D98105
2021-03-09 19:43:45 +00:00
Lei Zhang 50000abe3c [mlir] Use affine.apply when distributing to processors
This makes it easy to compose the distribution computation with
other affine computations.

Reviewed By: mravishankar

Differential Revision: https://reviews.llvm.org/D98171
2021-03-09 08:37:20 -05:00
Alex Zinenko 8184247f0b [mlir] move LLVM target import header and tests
Move Target/LLVMIR.h to target/LLVMIR/Import.h to better reflect the purpose of
this file. Also move all LLVM IR target tests under the LLVMIR directory.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D98178
2021-03-09 09:22:14 +01:00
Stella Laurenzo e31c77b182 [mlir][python] Reorganize MLIR python into namespace packages.
* Only leaf packages are non-namespace packages. This allows most of the top levels to be split into different directories or deployment packages. In the previous state, the presence of __init__.py files at each level meant that the entire tree could only ever exist in one physical directory on the path.
* This changes the API usage slightly: `import mlir` will no longer do a deep import of `mlir.ir`, etc. This may necessitate some client code changes.
* Dialect gen code was restructured so that the user is responsible for providing the `my_dialect.py` file, which then must import its peer `_my_dialect_ops_gen`. This gives complete control of the dialect namespace to the user instead of to tablegen code, allowing further dialect-specific python APIs.
* Correspondingly, the previous extension modules `_my_dialect.py` are now `_my_dialect_ops_ext.py`.
* Now that the `linalg` namespace is open, moved the `linalg_opdsl` tool into it.
* This may require some corresponding downstream adjustments to npcomp, circt, et al:
  * Probably some shallow imports need to be converted to deep imports (i.e. not `import mlir` brings in the world).
  * Each tablegen generated dialect now needs an explicit `foo.py` which does a `from ._foo_ops_gen import *`. This is similar to the way that generated code operates in the C++ world.
  * If providing dialect op extensions, those need to be moved from `_foo.py` -> `_foo_ops_ext.py`.

Differential Revision: https://reviews.llvm.org/D98096
2021-03-08 23:01:34 -08:00
Rob Suderman cb3542e1ca [MLIR][TOSA] Added lowerings for Reduce operations to Linalg
Lowerings for min, max, prod, and sum reduction operations on int and float
values. This includes reduction tests for both cases.

Reviewed By: mravishankar

Differential Revision: https://reviews.llvm.org/D97893
2021-03-08 10:57:19 -08:00
Christian Sigg 7cdcb4a3b9 [mlir] NFC: Add #endif comment. 2021-03-08 19:25:24 +01:00
Benjamin Kramer 42c195f0ec [mlir][Shape] Allow shape.split_at to return extent tensors and lower it to std.subtensor
split_at can return an error if the split index is out of bounds. If the
user knows that the index can never be out of bounds it's safe to use
extent tensors. This has a straight-forward lowering to std.subtensor.

Differential Revision: https://reviews.llvm.org/D98177
2021-03-08 16:48:05 +01:00
Mehdi Amini e94e55712c Forward the `LLVM_ENABLE_LIBCXX` CMake parameter to the mlir standalone test
This allows to build and test MLIR with `-DLLVM_ENABLE_LIBCXX=ON`.
2021-03-08 05:07:26 +00:00
KareemErgawy-TomTom 3fb384d50e [MLIR][SPIRV] Rename `spv.selection` to `spv.mlir.selection`.
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere. For ops that
don't have a SPIR-V spec counterpart, we use spv.mlir.snake_case.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D98014
2021-03-06 16:05:31 +01:00
Lei Zhang bb6f5c8314 [mlir][spirv] Convert tensor.extract for very small tensors
Normally tensors will be stored in buffers before converting to SPIR-V,
given that is how a large amount of data is sent to the GPU. However,
SPIR-V supports converting from tensors directly too. This is for the
cases where the tensor just contains a small amount of elements and it
makes sense to directly inline them as a small data array in the shader.
To handle this, internally the conversion might create new local
variables. SPIR-V consumers in GPU drivers may or may not optimize that
away. So this has implications over register pressure. Therefore, a
threshold is used to control when the patterns should kick in.

Reviewed By: ThomasRaoux

Differential Revision: https://reviews.llvm.org/D98052
2021-03-06 08:03:36 -05:00
Matthias Springer acce0ea70c [mlir][AVX512] Add mask.compress to AVX512 dialect.
Adds mask.compress to the AVX512 dialect and defines a lowering to the LLVM dialect.

Differential Revision: https://reviews.llvm.org/D97611
2021-03-06 10:02:48 +09:00
Alex Zinenko 6410ee0d09 [mlir] Squash LLVM_ArmNeon dialect into ArmNeon
The two dialects are largely redundant. The former was introduced as a mirror
of the latter operating on LLVM dialect types. This is no longer necessary
since the LLVM dialect operates on built-in types. Combine the two dialects.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D98060
2021-03-05 23:33:32 +01:00
Aart Bik e5c8fc776f [mlir][vector] canonicalize unmasked gather/scatter/compress/expand directly into l/s
With the new vector.load/store operations, there is no need to go through
unmasked transfer operations (which will canonicalized to l/s anyway).

Reviewed By: dcaballe

Differential Revision: https://reviews.llvm.org/D98056
2021-03-05 14:23:50 -08:00
Diego Caballero 2de6dbda66 [mlir] Add 'Skip' result to Operation visitor
This patch is a follow-up on D97217. It adds a new 'Skip' result to the Operation visitor
so that a callback can stop the ongoing visit of an operation/block/region and
continue visiting the next one without fully interrupting the walk. Skipping is
needed to be able to erase an operation/block in pre-order and do not continue
visiting the internals of that operation/block.

Related to the skipping mechanism, the patch also introduces the following changes:
 * Added new TestIRVisitors pass with basic testing for the IR visitors.
 * Fixed missing early increment ranges in visitor implementation.
 * Updated documentation of walk methods to include erasure information and walk
   order information.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D97820
2021-03-06 00:02:20 +02:00
KareemErgawy-TomTom d48ceb45e3 [MLIR][SPIRV] Rename `spv.undef` to `spv.Undef`.
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere. For ops that
don't have a SPIR-V spec counterpart, we use spv.mlir.snake_case.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D98016
2021-03-05 15:49:44 -05:00
KareemErgawy-TomTom 29812a6195 [MLIR][SPIRV] Rename `spv.loop` to `spv.mlir.loop`.
To unify the naming scheme across all ops in the SPIR-V dialect,
we are moving from spv.camelCase to spv.CamelCase everywhere.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D97918
2021-03-05 15:44:30 -05:00
Stella Laurenzo 0b5f1b859f [mlir][linalg] Add linalg_opdsl tool first draft.
* Mostly imported from experimental repo as-is with cosmetic changes.
* Temporarily left out emission code (for building ops at runtime) to keep review size down.
* Documentation and lit tests added fresh.
* Sample op library that represents current Linalg named ops included.

Differential Revision: https://reviews.llvm.org/D97995
2021-03-05 11:45:09 -08:00
Aart Bik adc35b689f [mlir][sparse] mask reduction update
Reduction updates should be masked, just like the load and stores.
Note that alternatively, we could use the fact that masked values are
zero of += updates and mask invariants to get this working but that
would not work for *= updates. Masking the update itself is cleanest.
This change also replaces the constant mask with a broadcast of "true"
since this constant folds much better for various folding patterns.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D98000
2021-03-05 08:56:10 -08:00
Nicolas Vasilache c86d3c1a38 [mlir][Linalg] Fix order of dimensions in hoistPaddingOnTensors. 2021-03-05 15:11:35 +00:00
Nicolas Vasilache 35908406dc [mlir][scf] Canonicalize scf.for last tensor iteration result.
Canonicalize the iter_args of an scf::ForOp that involve a tensor_load and
for which only the last loop iteration is actually visible outside of the
loop. The canonicalization looks for a pattern such as:
```
   %t0 = ... : tensor_type
   %0 = scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
     ...
     // %m is either tensor_to_memref(%bb00) or defined above the loop
     %m... : memref_type
     ... // uses of %m with potential inplace updates
     %new_tensor = tensor_load %m : memref_type
     ...
     scf.yield %new_tensor : tensor_type
   }
```

`%bb0` may have either 0 or 1 use. If it has 1 use it must be exactly a
`%m = tensor_to_memref %bb0` op that feeds into the yielded `tensor_load`
op.

If no aliasing write of `%new_tensor` occurs between tensor_load and yield
then the value %0 visible outside of the loop is the last `tensor_load`
produced in the loop.

For now, we approximate the absence of aliasing by only supporting the case
when the tensor_load is the operation immediately preceding the yield.

The canonicalization rewrites the pattern as:
```
   // %m is either a tensor_to_memref or defined above
   %m... : memref_type
   scf.for ... { // no iter_args
     ... // uses of %m with potential inplace updates
   }
   %0 = tensor_load %m : memref_type
```

Differential revision: https://reviews.llvm.org/D97953
2021-03-05 09:42:19 +00:00
KareemErgawy-TomTom c74eb466d2 [MLIR][SPIRV] Rename `spv.globalVariable` to `spv.GlobalVariable`.
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D97919
2021-03-04 16:24:59 -05:00
KareemErgawy-TomTom 5abdca47b3 [MLIR][SPIRV] Rename `spv.constant` to `spv.Constant`.
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from `spv.camelCase` to `spv.CamelCase` everywhere.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D97917
2021-03-04 16:15:56 -05:00
KareemErgawy-TomTom 4d90e460bc [MLIR][SPIRV] Rename `spv.spcConstant...` to `spv.SpcConstant...`.
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere.

Differential Revision: https://reviews.llvm.org/D97920
2021-03-04 16:07:41 -05:00
River Riddle 1447ec5182 [mlir][AttrDefGen] Add support for specifying the value type of an attribute
The value type of the attribute can be specified by either overriding the typeBuilder field on the AttrDef, or by providing a parameter of type `AttributeSelfTypeParameter`. This removes the need to define custom storage class constructors for attributes that have a value type other than NoneType.

Differential Revision: https://reviews.llvm.org/D97590
2021-03-04 13:04:05 -08:00
Ahmed Taei da1e37a8b0 Fold full-size subview of static shapes.
Differential Revision: https://reviews.llvm.org/D97429
2021-03-04 09:52:06 -08:00
Arpith C. Jacob 4e393350c5 [mlir] Add an AccessGroup attribute to load/store LLVM dialect ops and generate the access_group LLVM metadata.
This also includes LLVM dialect ops created from intrinsics.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D97944
2021-03-04 18:17:23 +01:00
Nicolas Vasilache f3cc854364 [mlir][Vector] Add folding of vector transfers from/into tensor producing ops.
Add a folder to rewrite a sequence such as:

```
   %t1 = ...
   %v = vector.transfer_read %t0[%c0...], {masked = [false...]} :
     tensor<static_sizesxf32>, vector<static_sizesxf32>
  %t2 = vector.transfer_write %v, %t1[%c0...] {masked = [false...]} :
     vector<static_sizesxf32>, tensor<static_sizesxf32>
```

into:

```
   %t0
```

The producer of t1 may or may not be DCE'd depending on whether it is a
block argument or has side effects.

Differential revision: https://reviews.llvm.org/D97934
2021-03-04 14:17:42 +00:00