Commit Graph

167 Commits

Author SHA1 Message Date
Chris Lattner 967d934180 Fix two issues:
1) We incorrectly reassociated non-reassociative operations like subi, causing
    miscompilations.
 2) When constant folding, we didn't add users of the new constant back to the
    worklist for reprocessing, causing us to miss some cases (pointed out by
    Uday).

The code for tensorflow/mlir#2 is gross, but I'll add the new APIs in a followup patch.

PiperOrigin-RevId: 218803984
2019-03-29 13:40:35 -07:00
Uday Bondhugula 988ce3387f Change sigil for integer set: @@ -> #
PiperOrigin-RevId: 218786684
2019-03-29 13:40:21 -07:00
MLIR Team 13f6cc0187 Run GCD test before elimination. Adds test case with rational solutions, but no integer solutions.
PiperOrigin-RevId: 218772332
2019-03-29 13:39:34 -07:00
Uday Bondhugula 80610c2f49 Introduce Fourier-Motzkin variable elimination + other cleanup/support
- Introduce Fourier-Motzkin variable elimination to eliminate a dimension from
  a system of linear equalities/inequalities. Update isEmpty to use this.
  Since FM is only exact on rational/real spaces, an emptiness check based on
  this is guaranteed to be exact whenever it says the underlying set is empty;
  if it says, it's not empty, there may still be no integer points in it.
  Also, supports a version that computes "dark shadows".

- Test this by checking for "always false" conditionals in if statements.

- Unique IntegerSet's that are small (few constraints, few variables). This
  basically means the canonical empty set and other small sets that are
  likely commonly used get uniqued; allows checking for the canonical empty set
  by pointer. IntegerSet::kUniquingThreshold gives the threshold constraint size
  for uniqui'ing.

- rename simplify-affine-expr -> simplify-affine-structures

Other cleanup

- IntegerSet::numConstraints, AffineMap::numResults are no longer needed;
  remove them.
- add copy assignment operators for AffineMap, IntegerSet.
- rename Invalid() -> Null() on AffineExpr, AffineMap, IntegerSet
- Misc cleanup for FlatAffineConstraints API

PiperOrigin-RevId: 218690456
2019-03-29 13:38:24 -07:00
MLIR Team 5413239350 Adds Gaussian Elimination to FlatAffineConstraints.
- Adds FlatAffineConstraints::isEmpty method to test if there are no solutions to the system.
- Adds GCD test check if equality constraints have no solution.
- Adds unit test cases.

PiperOrigin-RevId: 218546319
2019-03-29 13:38:10 -07:00
Alex Zinenko e8d254b909 Rename shape_cast to tensor_cast.
"shape_cast" only applies to tensors, and there are other operations that
actually affect shape, for example "reshape".  Rename "shape_cast" to
"tensor_cast" in both the code and the documentation.

PiperOrigin-RevId: 218528122
2019-03-29 13:37:41 -07:00
Chris Lattner bd01f9541f Teach canonicalize pass to unique and hoist constants to the entry block. This
is a straight-forward change, but required adding missing moveBefore() methods
on operations (requiring moving some traits around to make C++ happy).  This
also fixes a constness issue with the getBlock/getFunction() methods on
Instruction, and adds a missing getFunction() method on MLFuncBuilder.

PiperOrigin-RevId: 218523905
2019-03-29 13:36:59 -07:00
Feng Liu 3d7ab2d265 Add support to opaque elements attributes
For some of the constant vector / tesor, if the compiler doesn't need to
interpret their elements content, they can be stored in this class to save the
serialize / deserialize cost.

syntax:

`opaque<` tensor-type `,` opaque-string `>`

opaque-string ::= `0x` [0-9a-fA-F]*
PiperOrigin-RevId: 218399426
2019-03-29 13:36:45 -07:00
Chris Lattner 301f83f906 Implement shape folding in the canonicalization pass:
- Add a few canonicalization patterns to fold memref_cast into
   load/store/dealloc.
 - Canonicalize alloc(constant) into an alloc with a constant shape followed by
   a cast.
 - Add a new PatternRewriter::updatedRootInPlace API to make this more convenient.

SimplifyAllocConst and the testcase is heavily based on Uday's implementation work, just
in a different framework.

PiperOrigin-RevId: 218361237
2019-03-29 13:36:31 -07:00
Alex Zinenko 991adadccb Move the ReturnOp type checks to ReturnOp::verify.
This was left as a TODO in the code.  Move the type verification from
MLFuncVerifier::verifyReturn to ReturnOp::verify.  Since the return operation
can only appear as the last statement of an MLFunction, i.e. where the
surrounding block is the function itself, it is easy to access the function
descriptor (ReturnOp::verify already relies on this).  From the function
descriptor, one can easily access the type information.  Note that this
slightly modifies the error message due to the use of emitOpError instead of a
plain emitError.

Drop the obsolete TODO comment in MLFunction::verify about checking that
"return" only appears as the last operation of an MLFunction since
ReturnOp::verify explicitly checks for that.
PiperOrigin-RevId: 218347843
2019-03-29 13:36:17 -07:00
Alex Zinenko d58ffaffe0 Verify that the first block of a cfgfunc does not have predecessors.
This was left as a TODO in the code.  Note that the spec does not explicitly
prohibit the first basic block from having a predecessor, and may be worth
updating.

The error is reported at the location of the cfgfunc to which the basic block
belongs since the location information of the block label is not propagated
beyond the IR parser.  Arguably, pointing to a function that starts with an
ill-formed block is better than pointing to the first operation in that block
as it makes easier to follow the code down until the first block label.

PiperOrigin-RevId: 218343654
2019-03-29 13:36:01 -07:00
Chris Lattner a03051b9c4 Add a pattern (x+0) -> x, generalize Canonicalize to CFGFunc's, address a few TODOs,
and add some casting support to Operation.

PiperOrigin-RevId: 218219340
2019-03-29 13:35:33 -07:00
Chris Lattner b2f93b27ee introduce a memref_cast operation, refactoring common code between it and
shape_cast into a common CastOp class.

PiperOrigin-RevId: 218175818
2019-03-29 13:35:06 -07:00
Chris Lattner 7850258c49 Introduce a new Operation::erase helper to generalize some code in
the pattern matcher / canonicalizer, and rename existing eraseFromBlock methods
to align with it.

PiperOrigin-RevId: 218104455
2019-03-29 13:34:51 -07:00
Uday Bondhugula a55b2c2eb6 Fix AffineExpr printing bug: paren ellision b/117887365.
PiperOrigin-RevId: 217803621
2019-03-29 13:33:10 -07:00
Feng Liu 03b48999b6 Add support to constant sparse tensor / vector attribute
The SparseElementsAttr uses (COO) Coordinate List encoding to represents a
sparse tensor / vector. Specifically, the coordinates and values are stored as
two dense elements attributes. The first dense elements attribute is a 2-D
attribute with shape [N, ndims], which contains the indices of the elements
with nonzero values in the constant vector/tensor. The second elements
attribute is a 1-D attribute list with shape [N], which supplies the values for
each element in the first elements attribute. ndims is the rank of the
vector/tensor and N is the total nonzero elements.

The syntax is:

`sparse<` (tensor-type | vector-type)`, ` indices-attribute-list, values-attribute-list `>`

Example: a sparse tensor

sparse<vector<3x4xi32>, [[0, 0], [1, 2]], [1, 2]> represents the dense tensor

[[1, 0, 0, 0]
 [0, 0, 2, 0]
 [0, 0, 0, 0]]

PiperOrigin-RevId: 217764319
2019-03-29 13:32:55 -07:00
Feng Liu b5b90e5465 Add support to constant dense vector/tensor attribute.
The syntax of dense vecor/tensor attribute value is

`dense<` (tensor-type | vector-type)`,` attribute-list`>`

and

attribute-list ::= `[` attribute-list (`, ` attribute-list)* `]`.

The construction of the dense vector/tensor attribute takes a vector/tensor
type and a character array as arguments. The size of the input array should be
larger than the size specified by the type argument. It also assumes the
elements of the vector or tensor have been trunked to the data type sizes in
the input character array, so it extends the trunked data to 64 bits when it is
retrieved.

PiperOrigin-RevId: 217762811
2019-03-29 13:32:41 -07:00
Uday Bondhugula 18e666702c Generalize / improve DMA transfer overlap; nested and multiple DMA support; resolve
multiple TODOs.

- replace the fake test pass (that worked on just the first loop in the
  MLFunction) to perform DMA pipelining on all suitable loops.
- nested DMAs work now (DMAs in an outer loop, more DMAs in nested inner loops)
- fix bugs / assumptions: correctly copy memory space and elemental type of source
  memref for double buffering.
- correctly identify matching start/finish statements, handle multiple DMAs per
  loop.
- introduce dominates/properlyDominates utitilies for MLFunction statements.
- move checkDominancePreservationOnShifts to LoopAnalysis.h; rename it
  getShiftValidity
- refactor getContainingStmtPos -> findAncestorStmtInBlock - move into
  Analysis/Utils.h; has two users.
- other improvements / cleanup for related API/utilities
- add size argument to dma_wait - for nested DMAs or in general, it makes it
  easy to obtain the size to use when lowering the dma_wait since we wouldn't
  want to identify the matching dma_start, and more importantly, in general/in the
  future, there may not always be a dma_start dominating the dma_wait.
- add debug information in the pass

PiperOrigin-RevId: 217734892
2019-03-29 13:32:28 -07:00
Nicolas Vasilache 3013dadb7c [MLIR] Basic infrastructure for vectorization test
This CL implements a very simple loop vectorization **test** and the basic
infrastructure to support it.

The test simply consists in:
1. matching the loops in the MLFunction and all the Load/Store operations
nested under the loop;
2. testing whether all the Load/Store are contiguous along the innermost
memory dimension along that particular loop. If any reference is
non-contiguous (i.e. the ForStmt SSAValue appears in the expression), then
the loop is not-vectorizable.

The simple test above can gradually be extended with more interesting
behaviors to account for the fact that a layout permutation may exist that
enables contiguity etc. All these will come in due time but it is worthwhile
noting that the test already supports detection of outer-vetorizable loops.

In implementing this test, I also added a recursive MLFunctionMatcher and some
sugar that can capture patterns
such as `auto gemmLike = Doall(Doall(Red(LoadStore())))` and allows iterating
on the matched IR structures. For now it just uses in order traversal but
post-order DFS will be useful in the future once IR rewrites start occuring.

One may note that the memory management design decision follows a different
pattern from MLIR. After evaluating different designs and how they quickly
increase cognitive overhead, I decided to opt for the simplest solution in my
view: a class-wide (threadsafe) RAII context.

This way, a pass that needs MLFunctionMatcher can just have its own locally
scoped BumpPtrAllocator and everything is cleaned up when the pass is destroyed.
If passes are expected to have a longer lifetime, then the contexts can easily
be scoped inside the runOnMLFunction call and storage lifetime reduced.
Lastly, whatever the scope of threading (module, function, pass), this is
expected to also be future-proof wrt concurrency (but this is a detail atm).

PiperOrigin-RevId: 217622889
2019-03-29 13:32:13 -07:00
Chris Lattner 80e884a9f8 Add constant folding and binary operator reassociation to the canonicalize
pass, build up the worklist infra in anticipation of improving the pattern
matcher to match more than one node.

PiperOrigin-RevId: 217330579
2019-03-29 13:31:44 -07:00
MLIR Team 0114e232d8 Adds method to AffineApplyOp which forward substitutes its results into any of its users which are also AffineApplyOps.
Updates ComposeAffineMaps test pass to use this method.
Updates affine map composition test cases to handle the new pass, which can be reused when this method is used in a future instruction combine pass.

PiperOrigin-RevId: 217163351
2019-03-29 13:30:49 -07:00
Jacques Pienaar 826f5c1c04 Avoid leak when parsing fails and BasicBlock has no use/function.
Associate BasicBlocks with the function being parsed to avoid leaks in the case of parse failures. Associating with the function means that we can no longer determine if defined/fwd declared simply by considering if a BasicBlock has an associated function, so track forward declared block references explicitly (this should also allow flagging multiple undeclared fwd references). Split out getting the named block from defining it, in the case of definition move the block to the end of the function.

Also destroy all forward reference placeholders in FunctionParser.

Return parse failure in parseAttributeDict if there is no left brace instead of
asserting.

PiperOrigin-RevId: 217049507
2019-03-29 13:30:06 -07:00
Uday Bondhugula 86eac4618c Create private exclusive / single use affine computation slice for an op stmt.
- add util to create a private / exclusive / single use affine
  computation slice for an op stmt (see method doc comment); a single
  multi-result affine_apply op is prepended to the op stmt to provide all
  results needed for its operands as a function of loop iterators and symbols.
- use it for DMA pipelining (to create private slices for DMA start stmt's);
  resolve TODOs/feature request (b/117159533)
- move createComposedAffineApplyOp to Transforms/Utils; free it from taking a
  memref as input / generalize it.

PiperOrigin-RevId: 216926818
2019-03-29 13:29:21 -07:00
Chris Lattner 9e3b928e32 Implement a super sketched out pattern match/rewrite framework and a sketched
out canonicalization pass to drive it, and a simple (x-x) === 0 pattern match
as a test case.

There is a tremendous number of improvements that need to land, and the
matcher/rewriter and patterns will be split out of this file, but this is a
starting point.

PiperOrigin-RevId: 216788604
2019-03-29 13:29:07 -07:00
Feng Liu 5e3cca906a Add support to constant splat vector/tensor attribute.
This attribute represents a reference to a splat vector or tensor, where all
the elements have the same value. The syntax of the attribute is:

`splat<` (tensor-type | vector-type)`,` attribute-value `>`

PiperOrigin-RevId: 216537997
2019-03-29 13:27:05 -07:00
Uday Bondhugula 82e55750d2 Add target independent standard DMA ops: dma.start, dma.wait
Add target independent standard DMA ops: dma.start, dma.wait. Update pipeline
data transfer to use these to detect DMA ops.

While on this
- return failure from mlir-opt::performActions if a pass generates invalid output
- improve error message for verify 'n' operand traits

PiperOrigin-RevId: 216429885
2019-03-29 13:26:10 -07:00
Jacques Pienaar 2df03be621 Fix some leak and crash found via fuzzing.
Tried adding a fuzzer target (cl/216378253) and ran into a few problems, and fixing two of these.

PiperOrigin-RevId: 216425403
2019-03-29 13:25:56 -07:00
MLIR Team fe490043b0 Affine map composition.
*) Implements AffineValueMap forward substitution for AffineApplyOps.
*) Adds ComposeAffineMaps transformation pass, which composes affine maps for all loads/stores in an MLFunction.
*) Adds multiple affine map composition tests.

PiperOrigin-RevId: 216216446
2019-03-29 13:24:59 -07:00
Chris Lattner d2d89cbc19 Rename affineint type to index type. The name 'index' may not be perfect, but is better than the old name. Here is some justification:
1) affineint (as it is named) is not a type suitable for general computation (e.g. the multiply/adds in an integer matmul).  It has undefined width and is undefined on overflow.  They are used as the indices for forstmt because they are intended to be used as indexes inside the loop.

2) It can be used in both cfg and ml functions, and in cfg functions.  As you mention, “symbols” are not affine, and we use affineint values for symbols.

3) Integers aren’t affine, the algorithms applied to them can be. :)

4) The only suitable use for affineint in MLIR is for indexes and dimension sizes (i.e. the bounds of those indexes).

PiperOrigin-RevId: 216057974
2019-03-29 13:24:16 -07:00
Uday Bondhugula d18ae9e2c7 Constant folding for loop bounds.
- Fold the lower/upper bound of a loop to a constant whenever the result of the
  application of the bound's affine map on the operand list yields a constant.

- Update/complete 'for' stmt's API to set lower/upper bounds with operands.
  Resolve TODOs for ForStmt::set{Lower,Upper}Bound.

- Moved AffineExprConstantFolder into AffineMap.cpp and added
  AffineMap::constantFold to be used by both AffineApplyOp and
  ForStmt::constantFoldBound.

PiperOrigin-RevId: 215997346
2019-03-29 13:24:01 -07:00
Chris Lattner 6822c4e29c Implement support for constant folding operations even when their operands are
not all constant.  Implement support for folding dim, x*0, and affine_apply.

PiperOrigin-RevId: 215917432
2019-03-29 13:23:32 -07:00
Uday Bondhugula 6cfdb756b1 Introduce memref replacement/rewrite support: to replace an existing memref
with a new one (of a potentially different rank/shape) with an optional index
remapping.

- introduce Utils::replaceAllMemRefUsesWith
- use this for DMA double buffering

(This CL also adds a few temporary utilities / code that will be done away with
once:
1) abstract DMA op's are added
2) memref deferencing side-effect / trait is available on op's
3) b/117159533 is resolved (memref index computation slices).
PiperOrigin-RevId: 215831373
2019-03-29 13:23:19 -07:00
Uday Bondhugula 0ebc927f2f Fix MLIR's floordiv, ceildiv, and mod for constant inputs (for negative lhs's)
- introduce mlir::{floorDiv, ceilDiv, mod} for constant inputs in
  mlir/Support/MathExtras.h
- consistently use these everywhere in IR, Analysis, and Transforms.

PiperOrigin-RevId: 215580677
2019-03-29 13:21:53 -07:00
Feng Liu 7d016fd352 Add support to Add, Sub, Mul for both Integer and Float types.
The new operations are registered and also the const folding of them are implemented.

PiperOrigin-RevId: 215575999
2019-03-29 13:21:40 -07:00
Uday Bondhugula 041817a45e Introduce loop body skewing / loop pipelining / loop shifting utility.
- loopBodySkew shifts statements of a loop body by stmt-wise delays, and is
  typically meant to be used to:
  - allow overlap of non-blocking start/wait until completion operations with
    other computation
  - allow shifting of statements (for better register
    reuse/locality/parallelism)
  - software pipelining (when applied to the innermost loop)
- an additional argument specifies whether to unroll the prologue and epilogue.
- add method to check SSA dominance preservation.
- add a fake loop pipeline pass to test this utility.

Sample input/output are below. While on this, fix/add following:

- fix minor bug in getAddMulPureAffineExpr
- add additional builder methods for common affine map cases
- fix const_operand_iterator's for ForStmt, etc. When there is no such thing
  as 'const MLValue', the iterator shouldn't be returning const MLValue's.
  Returning MLValue is const correct.

Sample input/output examples:

1) Simplest case: shift second statement by one.

Input:

for %i = 0 to 7 {
  %y = "foo"(%i) : (affineint) -> affineint
  %x = "bar"(%i) : (affineint) -> affineint
}

Output:

#map0 = (d0) -> (d0 - 1)
mlfunc @loop_nest_simple1() {
  %c8 = constant 8 : affineint
  %c0 = constant 0 : affineint
  %0 = "foo"(%c0) : (affineint) -> affineint
  for %i0 = 1 to 7 {
    %1 = "foo"(%i0) : (affineint) -> affineint
    %2 = affine_apply #map0(%i0)
    %3 = "bar"(%2) : (affineint) -> affineint
  }
  %4 = affine_apply #map0(%c8)
  %5 = "bar"(%4) : (affineint) -> affineint
  return
}

2) DMA overlap: shift dma.wait and compute by one.

Input
  for %i = 0 to 7 {
    %pingpong = affine_apply (d0) -> (d0 mod 2) (%i)
    "dma.enqueue"(%pingpong) : (affineint) -> affineint
    %pongping = affine_apply (d0) -> (d0 mod 2) (%i)
    "dma.wait"(%pongping) : (affineint) -> affineint
    "compute1"(%pongping) : (affineint) -> affineint
  }

Output

#map0 = (d0) -> (d0 mod 2)
#map1 = (d0) -> (d0 - 1)
#map2 = ()[s0] -> (s0 + 7)
mlfunc @loop_nest_dma() {
  %c8 = constant 8 : affineint
  %c0 = constant 0 : affineint
  %0 = affine_apply #map0(%c0)
  %1 = "dma.enqueue"(%0) : (affineint) -> affineint
  for %i0 = 1 to 7 {
    %2 = affine_apply #map0(%i0)
    %3 = "dma.enqueue"(%2) : (affineint) -> affineint
    %4 = affine_apply #map1(%i0)
    %5 = affine_apply #map0(%4)
    %6 = "dma.wait"(%5) : (affineint) -> affineint
    %7 = "compute1"(%5) : (affineint) -> affineint
  }
  %8 = affine_apply #map1(%c8)
  %9 = affine_apply #map0(%8)
  %10 = "dma.wait"(%9) : (affineint) -> affineint
  %11 = "compute1"(%9) : (affineint) -> affineint
  return
}

3) With arbitrary affine bound maps:

Shift last two statements by two.

Input:

  for %i = %N to ()[s0] -> (s0 + 7)()[%N] {
    %y = "foo"(%i) : (affineint) -> affineint
    %x = "bar"(%i) : (affineint) -> affineint
    %z = "foo_bar"(%i) : (affineint) -> (affineint)
    "bar_foo"(%i) : (affineint) -> (affineint)
  }

Output

#map0 = ()[s0] -> (s0 + 1)
#map1 = ()[s0] -> (s0 + 2)
#map2 = ()[s0] -> (s0 + 7)
#map3 = (d0) -> (d0 - 2)
#map4 = ()[s0] -> (s0 + 8)
#map5 = ()[s0] -> (s0 + 9)

  for %i0 = %arg0 to #map0()[%arg0] {
    %0 = "foo"(%i0) : (affineint) -> affineint
    %1 = "bar"(%i0) : (affineint) -> affineint
  }
  for %i1 = #map1()[%arg0] to #map2()[%arg0] {
    %2 = "foo"(%i1) : (affineint) -> affineint
    %3 = "bar"(%i1) : (affineint) -> affineint
    %4 = affine_apply #map3(%i1)
    %5 = "foo_bar"(%4) : (affineint) -> affineint
    %6 = "bar_foo"(%4) : (affineint) -> affineint
  }
  for %i2 = #map4()[%arg0] to #map5()[%arg0] {
    %7 = affine_apply #map3(%i2)
    %8 = "foo_bar"(%7) : (affineint) -> affineint
    %9 = "bar_foo"(%7) : (affineint) -> affineint
  }

4) Shift one by zero, second by one, third by two

  for %i = 0 to 7 {
    %y = "foo"(%i) : (affineint) -> affineint
    %x = "bar"(%i) : (affineint) -> affineint
    %z = "foobar"(%i) : (affineint) -> affineint
  }

#map0 = (d0) -> (d0 - 1)
#map1 = (d0) -> (d0 - 2)
#map2 = ()[s0] -> (s0 + 7)

  %c9 = constant 9 : affineint
  %c8 = constant 8 : affineint
  %c1 = constant 1 : affineint
  %c0 = constant 0 : affineint
  %0 = "foo"(%c0) : (affineint) -> affineint
  %1 = "foo"(%c1) : (affineint) -> affineint
  %2 = affine_apply #map0(%c1)
  %3 = "bar"(%2) : (affineint) -> affineint
  for %i0 = 2 to 7 {
    %4 = "foo"(%i0) : (affineint) -> affineint
    %5 = affine_apply #map0(%i0)
    %6 = "bar"(%5) : (affineint) -> affineint
    %7 = affine_apply #map1(%i0)
    %8 = "foobar"(%7) : (affineint) -> affineint
  }
  %9 = affine_apply #map0(%c8)
  %10 = "bar"(%9) : (affineint) -> affineint
  %11 = affine_apply #map1(%c8)
  %12 = "foobar"(%11) : (affineint) -> affineint
  %13 = affine_apply #map1(%c9)
  %14 = "foobar"(%13) : (affineint) -> affineint

5) SSA dominance violated; no shifting if a shift is specified for the second
statement.

  for %i = 0 to 7 {
    %x = "foo"(%i) : (affineint) -> affineint
    "bar"(%x) : (affineint) -> affineint
  }

PiperOrigin-RevId: 214975731
2019-03-29 13:21:26 -07:00
Uday Bondhugula ec35e51f6d Change loop step to be a positive integral constant
Changing this per discussion on mlir-team. Spec updated.

PiperOrigin-RevId: 214868483
2019-03-29 13:21:13 -07:00
Uday Bondhugula 591fa9698e Change behavior of loopUnrollFull with unroll factor 1
Using loopUnrollFull with unroll factor 1 should promote the loop body as
opposed to doing nothing.

PiperOrigin-RevId: 214812126
2019-03-29 13:20:59 -07:00
Chris Lattner c706e0b1b5 Add support for expected-warning and expected-note markers in mlir-opt -verify
mode.  We even diagnose mistakes nicely (aside from the a/an vowel confusion
which isn't worth worrying about):

test/IR/invalid.mlir split at line tensorflow/mlir#399:8:34: error: 'note' diagnostic emitted when expecting a 'error'
  %x = "bar"() : () -> i32    // expected-error {{operand defined here}}
                                 ^

PiperOrigin-RevId: 214773208
2019-03-29 13:20:46 -07:00
Chris Lattner c6e4aa9ba7 Fix b/116749799, an issue where the ZeroResult trait's verifier hook left in an old
form.  Upgrade it, and move all the trait verifier implementations consistently
out of line to reduce template bloat.

PiperOrigin-RevId: 214718242
2019-03-29 13:20:18 -07:00
Nicolas Vasilache 140672a2b8 [MLIR] Add DimOp build support
This CL introduces basic support to build a DimOp as well as a standalone test.

PiperOrigin-RevId: 214688910
2019-03-29 13:20:03 -07:00
Nicolas Vasilache 54e5b4b4c0 [MLIR] Fix AsmPrinter for short-hand bound notation
This CL retricts shorthand notation printing to only the bounds that can
be roundtripped unambiguously; i.e.:
1. ()[]->(%some_cst) ()[]
2. ()[s0]->(s0) ()[%some_symbol]

Upon inspection it turns out that the constant case was lossy so this CL also
updates it.

Note however that fixing this issue exhibits a potential issues in unroll.mlir.
L488 exhibits a map ()[s0] -> (1)()[%arg0] which could be simplified down to
()[]->(1)()[].
This does not seem like a bug but maybe an undesired complexity in the maps
generated by unrolling.
bondhugula@, care to take a look?

PiperOrigin-RevId: 214531410
2019-03-29 13:19:04 -07:00
Nicolas Vasilache 0f7fddfd65 [MLIR] Add support for MulFOp
This CL adds support for `mulf` which is necessary to write/emit a simple scalar
matmul in MLIR. This CL does not consider automation of generation of ops but
mulf is important and useful enough to be added on its own atm.

PiperOrigin-RevId: 214496098
2019-03-29 13:18:49 -07:00
MLIR Team 99188b9d98 Adds constant folding hook for AffineApplyOp.
PiperOrigin-RevId: 214287780
2019-03-29 13:18:19 -07:00
Nicolas Vasilache f9e50199e9 [MLIR] Fix AsmPrinter.cpp for single ssa-id AffineMap
The AsmPrinter wrongly assumes that all single ssa-id AffineMap
are the identity map for the purpose of printing.
This CL adds the missing level of indirection as well as a test.

This bug was originally shaken off by the experimental TC->MLIR path.

Before this CL, the test would print:
```
mlfunc @mlfuncsimplemap(%arg0 : affineint, %arg1 : affineint, %arg2 : affineint) {
  for %i0 = 0 to %arg0 {
    for %i1 = 0 to %i0 {
                   ~~~   should be %arg1
      %c42_i32 = constant 42 : i32
    }
  }
  return
}
```

PiperOrigin-RevId: 214120817
2019-03-29 13:18:05 -07:00
Chris Lattner d6f8ec7bac Introduce [post]dominator tree and related infrastructure, use it in CFG func
verifier.  We get most of this infrastructure directly from LLVM, we just
need to adapt it to our CFG abstraction.

This has a few unrelated changes engangled in it:
 - getFunction() in various classes was const incorrect, fix it.
 - This moves Verifier.cpp to the analysis library, since Verifier depends on
   dominance and these are both really analyses.
 - IndexedAccessorIterator::reference was defined wrong, leading to really
   exciting template errors that were fun to diagnose.
 - This flips the boolean sense of the foldOperation() function in constant
   folding pass in response to previous patch feedback.

PiperOrigin-RevId: 214046593
2019-03-29 13:17:20 -07:00
MLIR Team aa0309d704 Add verification for AllocOp.
PiperOrigin-RevId: 213829386
2019-03-29 13:16:47 -07:00
Chris Lattner 82eb284a53 Implement support for constant folding operations and a simple constant folding
optimization pass:

 - Give the ability for operations to implement a constantFold hook (a simple
   one for single-result ops as well as general support for multi-result ops).
 - Implement folding support for constant and addf.
 - Implement support in AbstractOperation and Operation to make this usable by
   clients.
 - Implement a very simple constant folding pass that does top down folding on
   CFG and ML functions, with a testcase that exercises all the above stuff.

Random cleanups:
 - Improve the build APIs for ConstantOp.
 - Stop passing "-o -" to mlir-opt in the testsuite, since that is the default.

PiperOrigin-RevId: 213749809
2019-03-29 13:16:33 -07:00
Chris Lattner 14ca1be9a7 Add missing verifier logic for addf, and fix b/116054838 - Parser crash handling alloc with no affine mappings.
PiperOrigin-RevId: 213639056
2019-03-29 13:15:48 -07:00
Feng Liu 7e004efae2 Add function attributes for ExtFunction, CFGFunction and MLFunction.
PiperOrigin-RevId: 213540509
2019-03-29 13:15:35 -07:00
Jacques Pienaar 81a066e6e7 Switch from positional argument to explicit flags for mlir-translate
This results in uniform behavior with mlir-opt. Exactly one transformation is allowed.

PiperOrigin-RevId: 213493415
2019-03-29 13:15:22 -07:00