This replaces the use of getOriginalAddrPtr, a value that is stored in
ScopArrayInfo and might at some point not be unique any more. However, the
access value is defined to be unique.
This change is an update on r294576, which only clarified that we need the
original memory access, but where we still remained dependent to have one base
pointer per scop.
This change removes unnecessary uses of MemoryAddress::getOriginalBaseAddr() in
preparation for https://reviews.llvm.org/D28518.
llvm-svn: 294733
By using the public interface MemoryAccess::getScopArrayInfo() we avoid the
direct access to the ScopArrayInfoMap and as a result also do not need to
use the BasePtr as key. This change makes the code cleaner.
The const-cast we introduce is a little ugly. We may consider to drop const
correctness for getScopArrayInfo() at some point.
This change removes unnecessary uses of MemoryAddress::getBaseAddr() in
preparation for https://reviews.llvm.org/D28518.
llvm-svn: 294655
LLVM's coding conventions suggest to use auto only in obvious cases. Hence,
we move this code to actually declare the types used. We also replace the
variable name 'SAI', with the name 'Array', as this improves readability.
llvm-svn: 294654
When building alias groups, we sort different ScopArrays into unrelated groups.
Historically we identified arrays through their base pointer, as no
ScopArrayInfo class was yet available. This change changes the alias group
construction to reference arrays through their ScopArrayInfo object.
This change removes unnecessary uses of MemoryAddress::getBaseAddr() in
preparation for https://reviews.llvm.org/D28518.
llvm-svn: 294649
During SCoP construction we sometimes inspect the underlying IR by looking at
the base address of a MemoryAccess. In such cases, we always want the original
base address. Make this clear by calling getOriginalBaseAddr().
This is a non-functional change as getBaseAddr maps to getOriginalBaseAddr
at the moment.
This change removes unnecessary uses of MemoryAddress::getBaseAddr() in
preparation for https://reviews.llvm.org/D28518.
llvm-svn: 294576
The base address of a memory access is already an llvm::Value. Hence, there is
no need to go through SCEV, but we can directly work with the llvm::Value.
Also use 'Value *' instead of 'auto' for cases where the type is not obvious.
llvm-svn: 294575
When computing reduction dependences we first identify all ScopArrays which are
part of reductions and then only compute for these ScopArrays the more detailed
data dependences that allow us to identify reductions and optimize across them.
Instead of using the base pointer as identifier of a ScopArray, it is clearer
and more understandable to directly use the ScopArray as identifier. This change
implements such a switch.
This change removes unnecessary uses of MemoryAddress::getBaseAddr() in
preparation for https://reviews.llvm.org/D28518.
llvm-svn: 294567
Before this change the user only saw "Unspecified Error", when a region
contained the entry block. Now we report:
"Scop contains function entry (not yet supported)."
llvm-svn: 293169
Summary:
Instead of forbidding such access functions completely, we verify that their
base pointer has been hoisted and only assert in case the base pointer was
not hoisted.
I was trying for a little while to get a test case that ensures the assert is
correctly fired in case of invariant load hoisting being disabled, but I could
not find a good way to do so, as llvm-lit immediately aborts if a command
yields a non-zero return value. As we do not generally test our asserts,
not having a test case here seems OK.
This resolves http://llvm.org/PR31494
Suggested-by: Michael Kruse <llvm@meinersbur.de>
Reviewers: efriedma, jdoerfert, Meinersbur, gareevroman, sebpop, zinob, huihuiz, pollydev
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D28798
llvm-svn: 292213
Move the function getFirstNonBoxedLoopFor which is used in ScopBuilder
and in ScopInfo to Support/ScopHelpers to make it reusable in other
locations. No functionality change.
Patch by Sameer Abu Asal.
Differential Revision: https://reviews.llvm.org/D28754
llvm-svn: 292168
Before this change, this code has been mixed with a check for non-affine
loops (and when originally introduce was also duplicated). By creating
a separate loop and explicitly documenting this property, the current
behavior becomes a lot more clear.
llvm-svn: 292140
The loop body in buildAliasGroups is still too large to easily scan it. Hence,
we split the loop body out into a separate function to improve readability.
llvm-svn: 292138
Instead of modifying the original alias group and repurposing it as read-write
access group when splitting accesses in read-only and read-write accesses, we
just keep all three groups: the original alias group, the set of read-only
accesses and the set of read-write accesses. This allows us to remove some
complicated iterator handling and also allows for more code-reuse in
calculateMinMaxAccess.
llvm-svn: 292137
It seems over time we added an additional map that maps from the base address
of a read-only access to the actual access. However this map is never used.
Drop the creation and use of this map to simplify our alias check generation
code.
llvm-svn: 292126
The alias group will anyhow be cleared at the end of this function and is not
used afterwards. We avoid an explicit clear() call at multiple places to
improve readability of this code.
llvm-svn: 292125
Hoisting small vectors out of a loop seems to be a pure performance
optimization, which is unlikely to have great impact in practice. As this
hoisting just increases code-complexity, we fold the SmallVectors back into
the loop.
In subsequent commits, we will further simplify and structure this code, but
we committed this change separately to provide an explanation to make clear
that we purposefully reverted this optimization.
llvm-svn: 292122
The function buildAliasGroups got very large. We extract out the splitting
of alias groups to reduce its size and to better document the current behavior.
llvm-svn: 292121
The function buildAliasGroups got very large. We extract out the actual
construction of alias groups to reduce its size and to better document the
current behavior.
llvm-svn: 292120
To benefit of the type safety guarantees of C++11 typed enums, which would have
caught the type mismatch fixed in r291960, we make MemoryKind a typed enum.
This change also allows us to drop the 'MK_' prefix and to instead use the more
descriptive full name of the enum as prefix. To reduce the amount of typing
needed, we use this opportunity to move MemoryKind from ScopArrayInfo to a
global scope, which means the ScopArrayInfo:: prefix is not needed. This move
also makes historically sense. In the beginning of Polly we had different
MemoryKind enums in both MemoryAccess and ScopArrayInfo, which were later
canonicalized to one. During this canonicalization we just choose the enum in
ScopArrayInfo, but did not consider to move this shared enum to global scope.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D28090
llvm-svn: 292030
The AssumptionCache was removed in r289756 after being replaced by the an
addtional operand list of affected values in r289755. The absence of that cache
means that we have now have to manually search for llvm.assume intrinsics as
now done by other passes (LazyValueInfo, CodeMetrics) do not take into
account an llvm::Instruction's user lists (ScalarEvolution).
llvm-svn: 289791
clang-format has been updated in r289531 to keep labels and values on
the same line. This change updates Polly to the new formatting style.
llvm-svn: 289533
Unsigned operations are often useful to support but the heuristics are
not yet tuned. This options allows to disable them if necessary.
llvm-svn: 288521
Relational comparisons should not involve multiple potentially
aliasing pointers. Similarly this should hold for switch conditions
and the two conditions involved in equality comparisons (separately!).
This is a heuristic based on the C semantics that does only allow such
operations when the base pointers do point into the same object.
Since this makes aliasing likely we will bail out early instead of
producing a probably failing runtime check.
llvm-svn: 288516
This allows us to delinearize code such as the one below, where the array
sizes are A[][2 * n] as there are n times two elements in the innermost
dimension. Alternatively, we could try to generate another dimension for the
struct in the innermost dimension, but as the struct has constant size,
recovering this dimension is easy.
struct com {
double Real;
double Img;
};
void foo(long n, struct com A[][n]) {
for (long i = 0; i < 100; i++)
for (long j = 0; j < 1000; j++)
A[i][j].Real += A[i][j].Img;
}
int main() {
struct com A[100][1000];
foo(1000, A);
llvm-svn: 288489
After having built memory accesses we perform some additional transformations
on them to increase the chances that our delinearization guesses the right
shape. Only after these transformations, we take the assumptions that the
array shape we predict is such that no out-of-bounds memory accesses arise.
Before this change, the construction of the memory access, the access folding
that improves the represenation for certain parametric subscripts, and taking
the assumption was all done right after a memory access was created. In this
change we split this now into three separate iterations over all memory
accesses. This means only after all memory accesses have been built, we start
to canonicalize accesses, and to take assumptions. This split prepares for
future canonicalizations that must consider all memory accesses for deriving
additional beneficial transformations.
llvm-svn: 288479
Feasibility is checked late on its own but early it is hidden behind
the "PollyProcessUnprofitable" guard. This change will make sure we opt
out early if the runtime context is infeasible anyway.
llvm-svn: 288329
We now collect:
Number of total loops
Number of loops in scops
Number of scops
Number of scops with maximal loop depth 1
Number of scops with maximal loop depth 2
Number of scops with maximal loop depth 3
Number of scops with maximal loop depth 4
Number of scops with maximal loop depth 5
Number of scops with maximal loop depth 6 and larger
Number of loops in scops (profitable scops only)
Number of scops (profitable scops only)
Number of scops with maximal loop depth 1 (profitable scops only)
Number of scops with maximal loop depth 2 (profitable scops only)
Number of scops with maximal loop depth 3 (profitable scops only)
Number of scops with maximal loop depth 4 (profitable scops only)
Number of scops with maximal loop depth 5 (profitable scops only)
Number of scops with maximal loop depth 6 and larger (profitable scops only)
These statistics are certainly completely accurate as we might drop scops
when building up their polyhedral representation, but they should give a good
indication of the number of scops we detect.
llvm-svn: 287973
Our original statistics were added before we introduced a more fine-grained
diagnostic system, but the granularity of our statistics has never been
increased accordingly. This change introduces now one statistic counter per
diagnostic to enable us to collect fine-grained statistics about who certain
scops are not detected. In case coarser grained statistics are needed, the
user is expected to combine counters manually.
llvm-svn: 287968
Do not assume a load to be hoistable/invariant if the pointer is used by
another instruction in the SCoP that might write to memory and that is
always executed.
llvm-svn: 287272
Since we do not necessarily treat memory intrinsics as non-affine
anymore, we have to check for them explicitly before we try to hoist an
access.
llvm-svn: 287270
Commit r286294 introduced support for inaccessiblememonly and
inaccessiblemem_or_argmemonly attributes to BasicAA, which we need to
support to avoid undefined behavior. This change just refuses all calls
which are annotated with these attributes, which is conservatively correct.
In the future we may consider to model and support such function calls
in Polly.
llvm-svn: 286771
The validity of a branch condition must be verified at the location of the
branch (the branch instruction), not the location of the icmp that is
used in the branch instruction. When verifying at the wrong location, we
may accept an icmp that is defined within a loop which itself dominates, but
does not contain the branch instruction. Such loops cannot be modeled as
we only introduce domain dimensions for surrounding loops. To address this
problem we change the scop detection to evaluate and verify SCEV expressions at
the right location.
This issue has been around since at least r179148 "scop detection: properly
instantiate SCEVs to the place where they are used", where we explicitly
set the scope to the wrong location. Before this commit the scope
was not explicitly set, which probably also resulted in the scope around the
ICmp to be choosen.
This resolves http://llvm.org/PR30989
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286769
Assumptions can either be added for a given basic block, in which case the set
describing the assumptions is expected to match the dimensions of its domain.
In case no basic block is provided a parameter-only set is expected to describe
the assumption.
The piecewise expressions that are generated by the SCEVAffinator sometimes
have a zero-dimensional domain (e.g., [p] -> { [] : p <= -129 or p >= 128 }),
which looks similar to a parameter-only domain, but is still a set domain.
This change adds an assert that checks that we always pass parameter domains to
addAssumptions if BB is empty to make mismatches here fail early.
We also change visitTruncExpr to always convert to parameter sets, if BB is
null. This change resolves http://llvm.org/PR30941
Another alternative to this change would have been to inspect all code to make
sure we directly generate in the SCEV affinator parameter sets in case of empty
domains. However, this would likely complicate the code which combines parameter
and non-parameter domains when constructing a statement domain. We might still
consider doing this at some point, but as this likely requires several non-local
changes this should probably be done as a separate refactoring.
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286444
In r248701 "Allow switch instructions in SCoPs" support for switch statements
has been introduced, but support for switch statements in loop latches was
incomplete. This change completely disables switch statements in loop latches.
The original commit changed addLoopBoundsToHeaderDomain to support non-branch
terminator instructions, but this change was incorrect: it added a check for
BI != null to the if-branch of a condition, but BI was used in the else branch
es well. As a result, when a non-branch terminator instruction is encounted a
nullptr dereference is triggered. Due to missing test coverage, this bug was
overlooked.
r249273 "[FIX] Approximate non-affine loops correctly" added code to disallow
switch statements for non-affine loops, if they appear in either a loop latch
or a loop exit. We adapt this code to now prohibit switch statements in
loop latches even if the control condition is affine.
We could possibly add support for switch statements in loop latches, but such
support should be evaluated and tested separately.
This fixes llvm.org/PR30952
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286426
Add asserts that verify that the memory accesses of a new copy statement
are defined for all domain instances the copy statement is defined for.
llvm-svn: 286047
We don't actually check whether a MemoryAccess is affine in very many
places, but one important one is in checks for aliasing.
Differential Revision: https://reviews.llvm.org/D25706
llvm-svn: 285746
When adding an llvm.memcpy instruction to AliasSetTracker, it uses the raw
source and target pointers which preserve bitcasts.
MemAccInst::getPointerOperand() also returns the raw target pointers, but
Scop::buildAliasGroups() did not for the source pointer. This lead to mismatches
between AliasSetTracker and ScopInfo on which pointer to use.
Fixed by also using raw pointers in Scop::buildAliasGroups().
llvm-svn: 285071
Summary: Otherwise the lack of an iteration order results in non-determinism in codegen.
Reviewers: _jdoerfert, zinob, grosser
Tags: #polly
Differential Revision: https://reviews.llvm.org/D25863
llvm-svn: 284845
Under some conditions MK_Value read accessed where converted to MK_ExitPHI read
accessed. This is unexpected because MK_ExitPHI read accesses are implicit after
the scop execution. This behaviour was introduced in r265261, which fixed a
failed assertion/crash in CodeGen.
Instead, we fix this failure in CodeGen itself. createExitPHINodeMerges(),
despite its name, also handles accesses of kind MK_Value, only to skip them
because they access values that are usually not PHI nodes in the SCoP region's
exit block. Except in the situation observed in r265261.
Do not convert value accessed to ExitPHI accesses and do not handle
value accesses like ExitPHI accessed in CodeGen anymore.
llvm-svn: 284023
ISL tries to simplify the polyhedral operations before printing its objects.
This increases the operations counter and therefore can contribute to hitting
the operations limit. Therefore the result could be different when -debug output
is enabled, making debugging harder.
llvm-svn: 283745
IslMaxOperationsGuard defines a scope where ISL may abort operations because if
it takes too many operations. Replace the call to the raw ISL interface by a
use of the guard.
IslMaxOperationsGuard provides a uniform way to define a maximal computation
time for a code region in C++ using RAII.
llvm-svn: 283744
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
With this option one can disable the heuristic that assumes that statements with
a scalar write access cannot be profitably optimized. Such a statement instances
necessarily have WAW-dependences to itself. With DeLICM scalar accesses can be
changed to array accesses, which can avoid these WAW-dependence.
llvm-svn: 283233
ScopArrayInfo used to determine base pointer origins by looking up whether the
base pointer is a load. The "base pointer" for scalar accesses is the
llvm::Value being accessed. This is only a symbolic base pointer, it
represents the alloca variable (.s2a or .phiops) generated for it at code
generation.
This patch disables determining base pointer origin for scalars.
A test case where this caused a crash will be added in the next commit. In that
test SAI tried to get the origin base pointer that was only declared later,
therefore not existing. This is probably only possible for scalars used in
PHINode incoming blocks.
llvm-svn: 283232
Summary:
Both `canUseISLTripCount()` and `addOverApproximatedRegion()` contained checks
to reject endless loops which are now removed and replaced by a single check
in `isValidLoop()`.
For reporting such loops the `ReportLoopOverlapWithNonAffineSubRegion` is
renamed to `ReportLoopHasNoExit`. The test case
`ReportLoopOverlapWithNonAffineSubRegion.ll` is adapted and renamed as well.
The schedule generation in `buildSchedule()` is based on the following
assumption:
Given some block B that is contained in a loop L and a SESE region R,
we assume that L is contained in R or the other way around.
However, this assumption is broken in the presence of endless loops that are
nested inside other loops. Therefore, in order to prevent erroneous behavior
in `buildSchedule()`, r265280 introduced a corresponding check in
`canUseISLTripCount()` to reject endless loops. Unfortunately, it was possible
to bypass this check with -polly-allow-nonaffine-loops which was fixed by adding
another check to reject endless loops in `allowOverApproximatedRegion()` in
r273905. Hence there existed two separate locations that handled this case.
Thank you Johannes Doerfert for helping to provide the above background
information.
Reviewers: Meinersbur, grosser
Subscribers: _jdoerfert, pollydev
Differential Revision: https://reviews.llvm.org/D24560
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 281987
This is the fourth patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform copying to created
arrays, which is the last step to implement the packing transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23260
llvm-svn: 281441
The alias to the array element is read-only and a primitive type (pointer),
therefore use the value directly instead of a reference to it.
llvm-svn: 281311
We do not need the size of the outermost dimension in most cases, but if we
allocate memory for newly created arrays, that size is needed.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23991
llvm-svn: 281234
When running the clang static analyser to check for memory issues, this code
originally showed a double free, as the analyser was unable to understand that
isl_set_free always returns NULL and consequently later uses of the isl object
we just freed will never be reached. Without this knowledge, the analyser has
to issue a warning.
We refactor the code to make it clear that for empty maps the current loop
iteration is aborted.
llvm-svn: 280940
When running the clang static analyser to check for memory issues, this code
originally showed a double free, as the analyser was unable to understand that
isl_union_map_free always returns NULL and consequently later uses of the isl
object we just freed will never be reached. Without this knowledge, the analyser
has to issue a warning.
We refactor the code to make it clear that for empty maps the current loop
iteration is aborted.
llvm-svn: 280938
... but instead rely on the assumptions that we derive for load/store
instructions.
Before we were able to delinearize arrays, we used GEP pointer instructions
to derive information about the likely range of induction variables, which
gave us more freedom during loop scheduling. Today, this is not needed
any more as we delinearize multi-dimensional memory accesses and as part
of this process also "assume" that all accesses to these arrays remain
inbounds. The old derive-assumptions-from-GEP code has consequently become
mostly redundant. We drop it both to clean up our code, but also to improve
compile time. This change reduces the scop construction time for 3mm in
no-asserts mode on my machine from 48 to 37 ms.
llvm-svn: 280601
Without reductions we do not need a flat union_map schedule describing
the computation we want to perform, but can work purely on the schedule
tree. This reduces the dependence computation and scheduling time from 33ms
to 25ms. Another 30% reduction.
llvm-svn: 280558
In case we do not compute reduction dependences or dependences that are more
fine-grained than statement level dependences, we can avoid the corresponding
part of the dependence analysis all together. For the 3mm benchmark, this
reduces scheduling + dependence analysis time from 62ms to 33ms for a no-asserts
build. The majority of the compile time is anyhow spent in the LLVM backends,
when doing code generation. Nevertheless, there is no need to waste compile time
either.
llvm-svn: 280557
LLVM's coding guideline suggests to not use @brief for one-sentence doxygen
comments to improve readability. Switch this once and for all to ensure people
do not copy @brief comments from other parts of Polly, when writing new code.
llvm-svn: 280468
Change the code around setNewAccessRelation to allow to use a an existing array
element for memory instead of an ad-hoc alloca. This facility will be used for
DeLICM/DeGVN to convert scalar dependencies into regular ones.
The changes necessary include:
- Make the code generator use the implicit locations instead of the alloca ones.
- A test case
- Make the JScop importer accept changes of scalar accesses for that test case.
- Adapt the MemoryAccess interface to the fact that the MemoryKind can change.
They are named (get|is)OriginalXXX() to get the status of the memory access
before any change by setNewAccessRelation() (some properties such as
getIncoming() do not change even if the kind is changed and are still
required). To get the modified properties, there is (get|is)LatestXXX(). The
old accessors without Original|Latest become synonyms of the
(get|is)OriginalXXX() to not make functional changes in unrelated code.
Differential Revision: https://reviews.llvm.org/D23962
llvm-svn: 280408
There are some constraints on maps that can be access relations. In builds with assertions enabled, verify
- The access domain is the same space as the statement's domain (modulo parameters).
- Whether an access is defined for every instance of the statement. (codegen does not yet support partial access relations)
- Whether the access range links to an array, represented by a ScopArrayInfo.
- The number of access dimensions equals the dimensions of the array.
- The array is not an indirect access. (also not supported by codegen)
Differential Revision: https://reviews.llvm.org/D23916
llvm-svn: 280404
getAccessFunctions() is dead code and the 'BB' argument
of getOrCreateAccessFunctions() is not used. This patch deletes
getAccessFunctions and transforms AccFuncMap into
a std::vector<std::unique_ptr<MemoryAccess>> AccessFunctions.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23759
llvm-svn: 279394
Normally this is ensured when adding PHI nodes, but as PHI node dependences
do not need to be added in case all incoming blocks are within the same
non-affine region, this was missed.
This corrects an issue visible in LNT's sqlite3, in case invariant load hoisting
was disabled.
llvm-svn: 278792
With invariant load hoisting enabled the LLVM buildbots currently show some
miscompiles, which are possibly caused by invariant load hosting itself.
Confirming and fixing this requires a more in-depth analysis. To meanwhile get
back green buildbots that allow us to observe other regressions, we disable
invariant code hoisting temporarily. The relevant bug is tracked at:
http://llvm.org/PR28985
llvm-svn: 278681
The function expandRegion() frees Region* objects again when it determines that
these are not valid SCoPs. However, the DetectionContext added to the
DetectionContextMap still holds a reference. The validity is checked using the
ValidRegions lookup table. When a new Region is added to that list, it might
share the same address, such that the DetectionContext contains two
Region* associations that are in ValidRegions, but that are unrelated and of
which one has already been free.
Also remove the DetectionContext when not a valid expansion.
llvm-svn: 278062
When entering the dependence computation and the max_operations is set, the
operations counter may have already exceeded the counter, thus aborting any ISL
computation from the start. The counter is reset at the end of the dependence
calculation such that a follow-up recomputation might succeed, ie. the success
of the first dependence calculation depends on unrelated ISL operations that
happened before, giving it a disadvantage to the following calculations.
This patch resets the operations counter at the beginning of the dependence
recalculation to not depend on previous actions. Otherwise additional
preprocessing of the Scop that aims to improve its schedulability (eg. DeLICM)
do have the effect that DependenceInfo and hence the scheduling fail more
likely, contraproductive to the goal of said preprocessing.
llvm-svn: 277810
Otherwise, we would try to re-optimize them with Polly-ACC and possibly even
generate kernels that try to offload themselves, which does not work as the
GPURuntime is not available on the accelerator and also does not make any
sense.
llvm-svn: 277589
Extend the jscop interface to allow the user to export arrays. It is required
that already existing arrays of the list of arrays correspond to arrays
of the SCoP. Each array that is appended to the list will be newly created.
Furthermore, we allow the user to modify access expressions to reference
any array in case it has the same element type.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D22828
llvm-svn: 277263
Adding a new pass PolyhedralInfo. This pass will be the interface to Polly.
Initially, we will provide the following interface:
- #IsParallel(Loop *L) - return a bool depending on whether the loop is
parallel or not for the given program order.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D21486
llvm-svn: 276637
Do not process SCoPs with infeasible runtime context in the new
ScopInfoWrapperPass. Do not compute dependences for such SCoPs in the new
DependenceInfoWrapperPass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D22402
llvm-svn: 276631
Summary: LLVM adds a new value FMRB_DoesNotReadMemory in the enumeration.
Reviewers: andrew.w.kaylor, chrisj, zinob, grosser, jdoerfert
Subscribers: Meinersbur, pollydev
Differential Revision: http://reviews.llvm.org/D22109
llvm-svn: 275085
Commit r275056 introduced a gcc compile failure due to us using two
types named 'Type', the first being the newly introduced member variable
'Type' the second being llvm::Type. We resolve this issue by renaming
the newly introduced member variable to AccessType.
llvm-svn: 275057