Summary: When identifying cold blocks, consider only the edge to the normal destination if the terminator is InvokeInst and let calcInvokeHeuristics() decide edge weights for the InvokeInst.
Reviewers: mcrosier, hfinkel, davidxl
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D24868
llvm-svn: 282262
Enhance SCEV to compute the trip count for some loops with unknown stride.
Patch by Pankaj Chawla
Differential Revision: https://reviews.llvm.org/D22377
llvm-svn: 281732
value is a pointer.
This patch is to fix PR30213. When expanding an expr based on ValueOffsetPair,
if the value is of pointer type, we can only create a getelementptr instead
of sub expr.
Differential Revision: https://reviews.llvm.org/D24088
llvm-svn: 281439
Fixed a bug in run-time checks for possible memory conflicts inside loop.
The bug is in Low <-> High boundaries calculation. The High boundary should be calculated as "last memory access pointer + element size".
Differential revision: https://reviews.llvm.org/D23176
llvm-svn: 279930
when unroll runtime iteration loop.
In llvm::UnrollRuntimeLoopRemainder, if the loop to be unrolled is the inner
loop inside a loop nest, the scalar evolution needs to be dropped for its
parent loop which is done by ScalarEvolution::forgetLoop. However, we can
postpone forgetLoop to the end of UnrollRuntimeLoopRemainder so TripCountSC
expansion can still reuse existing value.
Differential Revision: https://reviews.llvm.org/D23572
llvm-svn: 279748
Repeated inserts into AliasSetTracker have quadratic behavior - inserting a
pointer into AST is linear, since it requires walking over all "may" alias
sets and running an alias check vs. every pointer in the set.
We can avoid this by tracking the total number of pointers in "may" sets,
and when that number exceeds a threshold, declare the tracker "saturated".
This lumps all pointers into a single "may" set that aliases every other
pointer.
(This is a stop-gap solution until we migrate to MemorySSA)
This fixes PR28832.
Differential Revision: https://reviews.llvm.org/D23432
llvm-svn: 279274
The patch is to fix the bug in PR28705. It was caused by setting wrong return
value for SCEVExpander::findExistingExpansion. The return values of findExistingExpansion
have different meanings when the function is used in different ways so it is easy to make
mistake. The fix creates two new interfaces to replace SCEVExpander::findExistingExpansion,
and specifies where each interface is expected to be used.
Differential Revision: https://reviews.llvm.org/D22942
llvm-svn: 278161
The fix for PR28705 will be committed consecutively.
In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion.
However, const folding and sext/zext distribution can make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as
V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a
complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused
by the fact that S3 is generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV to
ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the
ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first
expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to
V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
llvm-svn: 278160
Shifts with a uniform but non-constant count were considered very expensive to
vectorize, because the splat of the uniform count and the shift would tend to
appear in different blocks. That made the splat invisible to ISel, and we'd
scalarize the shift at codegen time.
Since r201655, CodeGenPrepare sinks those splats to be next to their use, and we
are able to select the appropriate vector shifts. This updates the cost model to
to take this into account by making shifts by a uniform cheap again.
Differential Revision: https://reviews.llvm.org/D23049
llvm-svn: 277782
As it turns out, modref queries are broken with CFLAA. Specifically,
the data source we were using for determining modref behaviors
explicitly ignores operations on non-pointer values. So, it wouldn't
note e.g. storing an i32 to an i32* (or loading an i64 from an i64*).
It also ignores external function calls, rather than acting
conservatively for them.
(N.B. These operations, where necessary, *are* tracked by CFLAA; we just
use a different mechanism to do so. Said mechanism is relatively
imprecise, so it's unlikely that we can provide reasonably good modref
answers with it as implemented.)
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22978
llvm-svn: 277366
Summary:
The motivation is the same as in D22141: In order to add the hotness
attribute to optimization remarks we need BFI to be available in all
passes that emit optimization remarks. BFI depends on BPI so unless we
make this lazy as well we would still compute BPI unconditionally.
The solution is to use the new LazyBPI pass in LazyBFI and only compute
BPI when computation of BFI is requested by the client.
I extended the laziness test using a LoopDistribute test to also cover
BPI.
Reviewers: hfinkel, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22835
llvm-svn: 277083
This patch lets CFLAnders respond to mod-ref queries. It also includes
a small bugfix to CFLSteens.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22823
llvm-svn: 276939
This change lets us prove things like
"{X,+,10} s< 5000" implies "{X+7,+,10} does not sign overflow"
It does this by replacing replacing getConstantDifference by
computeConstantDifference (which is smarter) in
isImpliedCondOperandsViaRanges.
llvm-svn: 276505
In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion.
However, const folding and sext/zext distribution can make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as
V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a
complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused
by the fact that S3 is generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV to
ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the
ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first
expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to
V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
llvm-svn: 276136
This patch adds costs for the vectorized implementations of CTPOP, the default values were seriously underestimating the cost of these and was encouraging vectorization on targets where serialized use of POPCNT would be much better.
Differential Revision: https://reviews.llvm.org/D22456
llvm-svn: 276104
This patch adds function summary support to CFLAnders. It also comes
with a lot of tests! Woohoo!
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22450
llvm-svn: 276026
This patch adds proper handling of stratified attributes into our
anders-style CFLAA implementation. It also comes bundled with more
CFLAnders tests. :)
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22325
llvm-svn: 275604
This adds an incomplete anders-style implementation for CFLAA. It's
incomplete in that it's missing interprocedural analysis, attrs
handling, etc. and that it needs more tests. More tests and features
will be added in future commits.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22291
llvm-svn: 275602
Summary:
In preparation for changing GlobalsAA to stop assuming that intrinsics
can't read arbitrary globals, we need to make sure GlobalsAA is querying
function attributes rather than relying on this assumption.
This patch was inspired by: http://reviews.llvm.org/D20206
Reviewers: jmolloy, hfinkel
Subscribers: eli.friedman, llvm-commits
Differential Revision: https://reviews.llvm.org/D21318
llvm-svn: 275433
Summary:
This is necessary for D21771. In order to add the hotness attribute to
optimization remarks we need BFI to be available in all passes that emit
optimization remarks.
However we don't want to pay for computing BFI unless the hotness
attribute is requested.
This is achieved by making BFI lazy at the very high-level through a new
analysis pass -- BFI is not calculated unless requested.
I am adding a test to check the laziness under D21771 where the first
user of the analysis is added.
Reviewers: hfinkel, dexonsmith, davidxl
Subscribers: davidxl, dexonsmith, llvm-commits
Differential Revision: http://reviews.llvm.org/D22141
llvm-svn: 275250