through an invoke instruction.
The original patch for this was written by Mark Seaborn, but I've
reworked his test case into the existing returns_twice test case and
implemented the fix by the prior refactoring to actually run the cost
analysis over invoke instructions, and then here fixing our detection of
the returns_twice attribute to work for both calls and invokes. We never
noticed because we never saw an invoke. =[
llvm-svn: 197216
handles terminator instructions.
The inline cost analysis inheritted some pretty rough handling of
terminator insts from the original cost analysis, and then made it much,
much worse by factoring all of the important analyses into a separate
instruction visitor. That instruction visitor never visited the
terminator.
This works fine for things like conditional branches, but for many other
things we simply computed The Wrong Value. First example are
unconditional branches, which should be free but were counted as full
cost. This is most significant for conditional branches where the
condition simplifies and folds during inlining. We paid a 1 instruction
tax on every branch in a straight line specialized path. =[
Oh, we also claimed that the unreachable instruction had cost.
But it gets worse. Let's consider invoke. We never applied the call
penalty. We never accounted for the cost of the arguments. Nope. Worse
still, we didn't handle the *correctness* constraints of not inlining
recursive invokes, or exception throwing returns_twice functions. Oops.
See PR18206. Sadly, PR18206 requires yet another fix, but this
refactoring is at least a huge step in that direction.
llvm-svn: 197215
CallGraph.
This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.
This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.
I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.
Next up is the initial new-PM-style call graph analysis. =]
llvm-svn: 195722
(except functions marked always_inline).
Functions with 'optnone' must also have 'noinline' so they don't get
inlined into any other function.
Based on work by Andrea Di Biagio.
llvm-svn: 195046
The tests just hit this with a different sized
address space since I haven't figured out how
to use this to break it.
I thought I committed this a long time ago,
and I'm not sure why missing this hasn't caused
any problems.
llvm-svn: 194903
This is useful for debugging issues in the BlockFrequency implementation since
one can easily visualize where probability mass and other errors occur in the
propagation.
llvm-svn: 194654
with and without -g.
Adding a test case to make sure that the threshold used in the memory
dependence analysis is respected. The test case also checks that debug
intrinsics are not counted towards this threshold.
Differential Revision: http://llvm-reviews.chandlerc.com/D2141
llvm-svn: 194646
give the files a legacy prefix in the right directory. Use forwarding
headers in the old locations to paper over the name change for most
clients during the transitional period.
No functionality changed here! This is just clearing some space to
reduce renaming churn later on with a new system.
Even when the new stuff starts to go in, it is going to be hidden behind
a flag and off-by-default as it is still WIP and under development.
This patch is specifically designed so that very little out-of-tree code
has to change. I'm going to work as hard as I can to keep that the case.
Only direct forward declarations of the PassManager class are impacted
by this change.
llvm-svn: 194324
Patch by Michele Scandale!
Rewrite of the functions used to compute the backedge taken count of a
loop on LT and GT comparisons.
I decided to split the handling of LT and GT cases becasue the trick
"a > b == -a < -b" in some cases prevents the trip count computation
due to the multiplication by -1 on the two operands of the
comparison. This issue comes from the conservative computation of
value range of SCEVs: taking the negative SCEV of an expression that
have a small positive range (e.g. [0,31]), we would have a SCEV with a
fullset as value range.
Indeed, in the new rewritten function I tried to better handle the
maximum backedge taken count computation when MAX/MIN expression are
used to handle the cases where no entry guard is found.
Some test have been modified in order to check the new value correctly
(I manually check them and reasoning on possible overflow the new
values seem correct).
I finally added a new test case related to the multiplication by -1
issue on GT comparisons.
llvm-svn: 194116
This adds another heuristic to BPI, similar to the existing heuristic that
considers (x == 0) unlikely to be true. As suggested in the PACT'98 paper by
Deitrich, Cheng, and Hwu, -1 is often used to indicate an invalid index, and
equality comparisons with -1 are also unlikely to succeed. Local
experimentation supports this hypothesis: This yields a 1-2% speedup in the
test-suite sqlite benchmark on the PPC A2 core, with no significant
regressions.
llvm-svn: 193855
We can't do this for the general case as saying a GEP with a negative index
doesn't have unsigned wrap isn't valid for negative indices.
%gep = getelementptr inbounds i32* %p, i64 -1
But an inbounds GEP cannot run past the end of address space. So we check for
the very common case of a positive index and make GEPs derived from that NUW.
Together with Andy's recent non-unit stride work this lets us analyze loops
like
void foo3(int *a, int *b) {
for (; a < b; a++) {}
}
PR12375, PR12376.
Differential Revision: http://llvm-reviews.chandlerc.com/D2033
llvm-svn: 193514
Partial fix for PR17459: wrong code at -O3 on x86_64-linux-gnu
(affecting trunk and 3.3)
When SCEV expands a recurrence outside of a loop it attempts to scale
by the stride of the recurrence. Chained recurrences don't work that
way. We could compute binomial coefficients, but would hve to
guarantee that the chained AddRec's are in a perfectly reduced form.
llvm-svn: 193438
Partial fix for PR17459: wrong code at -O3 on x86_64-linux-gnu
(affecting trunk and 3.3)
ScalarEvolutionNormalization was attempting to normalize by adding and
subtracting strides. Chained recurrences don't work that way.
llvm-svn: 193437
This fix a memory leak found by valgrind.
Calling it from the base class destructor would not destroy the BasicCallGraph
bits.
FIXME: BasicCallGraph is the only thing that inherits from CallGraph. Can
we merge the two?
llvm-svn: 193412
LLVM optimizers may widen accesses to packed structures that overflow the structure itself, but should be in bounds up to the alignment of the object
llvm-svn: 193317
Major steps include:
1). introduces a not-addr-taken bit-field in GlobalVariable
2). GlobalOpt pass sets "not-address-taken" if it proves a global varirable
dosen't have its address taken.
3). AA use this info for disambiguation.
llvm-svn: 193251
We can have a struct type with a single field and the field does not start
with 0. In that case, we should correctly update the offset.
llvm-svn: 193137
The test before wasn't successfully testing this
since it was missing the datalayout piece to change
the size of the second address space.
llvm-svn: 193102
SCEV currently fails to compute loop counts for nonunit stride
loops. This comes up frequently. It prevents loop optimization and
forces vectorization to insert extra loop checks.
For example:
void foo(int n, int *x) {
for (int i = 0; i < n; i += 3) {
x[i] = i;
x[i+1] = i+1;
x[i+2] = i+2;
}
}
We need to properly handle the case in which limit > INT_MAX-stride. In
the above case: n > INT_MAX-3. In this case the loop counter will step
beyond the limit and overflow at the same time. However, knowing that
signed integer overlow in undefined, we can assume the loop test
behavior is arbitrary after overflow. This obeys both C undefined
behavior rules, and the more strict LLVM poison value rules.
I'm finally fixing this in response to Hal Finkel's persistence.
The most probable reason that we never optimized this before is that
we were being careful to handle case where the developer expected a
side-effect free infinite loop relying on overflow:
for (int i = 0; i < n; i += s) {
++j;
}
return j;
If INT_MAX+1 is a multiple of s and n > INT_MAX-s, then we might
expect an infinite loop. However there are plenty of ways to achieve
this effect without relying on undefined behavior of signed overflow.
llvm-svn: 193015
The heuristic was added to avoid spending too much compile time A specially
crafted test case (PR17461, PR16474) with many uses on a select or bitcast
instruction can still trigger the slow case. Add a check for that case.
This only affects compile time, don't have a good way to test it.
llvm-svn: 191896
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
llvm-svn: 191835
Remove the command line argument "struct-path-tbaa" since we should not depend
on command line argument to decide which format the IR file is using. Instead,
we check the first operand of the tbaa tag node, if it is a MDNode, we treat
it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
format.
When clang starts to use struct-path aware TBAA format no matter whether
struct-path-tbaa is no, and we can auto-upgrade existing bc files, the support
for scalar TBAA format can be dropped.
Existing testing cases are updated to use the struct-path aware TBAA format.
llvm-svn: 191538
This code isn't ready to deal with allocation functions where the return is not
the allocated pointer. The checks below will reject posix_memalign anyways.
llvm-svn: 191319
This is safe per C++11 18.6.1.1p3: [operator new returns] a non-null pointer to
suitably aligned storage (3.7.4), or else throw a bad_alloc exception. This
requirement is binding on a replacement version of this function.
Brings us a tiny bit closer to eliminating more vector push_backs.
llvm-svn: 191310
Overflow doesn't affect the correctness of equalities. Computing this is cheap,
we just reuse the computation for the inbounds case and try to peel of more
non-inbounds GEPs. This pattern is unlikely to ever appear in code generated by
Clang, but SCEV occasionally produces it.
llvm-svn: 191200
Upcoming SLP vectorization improvements will want to be able to estimate costs
of horizontal reductions. Add infrastructure to support this.
We model reductions as a series of (shufflevector,add) tuples ultimately
followed by an extractelement. For example, for an add-reduction of <4 x float>
we could generate the following sequence:
(v0, v1, v2, v3)
\ \ / /
\ \ /
+ +
(v0+v2, v1+v3, undef, undef)
\ /
((v0+v2) + (v1+v3), undef, undef)
%rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
%rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
%r = extractelement <4 x float> %bin.rdx8, i32 0
This commit adds a cost model interface "getReductionCost(Opcode, Ty, Pairwise)"
that will allow clients to ask for the cost of such a reduction (as backends
might generate more efficient code than the cost of the individual instructions
summed up). This interface is excercised by the CostModel analysis pass which
looks for reduction patterns like the one above - starting at extractelements -
and if it sees a matching sequence will call the cost model interface.
We will also support a second form of pairwise reduction that is well supported
on common architectures (haddps, vpadd, faddp).
(v0, v1, v2, v3)
\ / \ /
(v0+v1, v2+v3, undef, undef)
\ /
((v0+v1)+(v2+v3), undef, undef, undef)
%rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
%rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
%bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
%rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
%rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx.1 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
%r = extractelement <4 x float> %bin.rdx.1, i32 0
llvm-svn: 190876
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 190542
instead of having its own implementation.
The implementation of isTBAAVtableAccess is in TypeBasedAliasAnalysis.cpp
since it is related to the format of TBAA metadata.
The path for struct-path tbaa will be exercised by
test/Instrumentation/ThreadSanitizer/read_from_global.ll, vptr_read.ll, and
vptr_update.ll when struct-path tbaa is on by default.
llvm-svn: 190216
Revert unintentional commit (of an unreviewed change).
Original commit message:
Add getUnrollingPreferences to TTI
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189566
Allow targets to customize the default behavior of the generic loop unrolling
transformation. This will be used by the PowerPC backend when targeting the A2
core (which is in-order with a deep pipeline), and using more aggressive
defaults is important.
llvm-svn: 189565
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
llvm-svn: 189097
This fixes SCEVExpander so that it does not create multiple distinct induction
variables for duplicate PHI entries. Specifically, given some code like this:
do.body6: ; preds = %do.body6, %do.body6, %if.then5
%end.0 = phi i8* [ undef, %if.then5 ], [ %incdec.ptr, %do.body6 ], [ %incdec.ptr, %do.body6 ]
...
Note that it is legal to have multiple entries for a basic block so long as the
associated value is the same. So the above input is okay, but expanding an
AddRec in this loop could produce code like this:
do.body6: ; preds = %do.body6, %do.body6, %if.then5
%indvar = phi i64 [ %indvar.next, %do.body6 ], [ %indvar.next1, %do.body6 ], [ 0, %if.then5 ]
%end.0 = phi i8* [ undef, %if.then5 ], [ %incdec.ptr, %do.body6 ], [ %incdec.ptr, %do.body6 ]
...
%indvar.next = add i64 %indvar, 1
%indvar.next1 = add i64 %indvar, 1
And this is not legal because there are two PHI entries for %do.body6 each with
a distinct value.
Unfortunately, I don't have an in-tree test case.
llvm-svn: 188614
to find loops if the From and To instructions were in the same block.
Refactor the code a little now that we need to fill to start the CFG-walking
algorithm with more than one starting basic block sometimes.
Special thanks to Andrew Trick for catching an error in my understanding of
natural loops in code review.
llvm-svn: 188236
All libm floating-point rounding functions, except for round(), had their own
ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm
adding ISD::FROUND so that round() can be custom lowered as well.
For the most part, this is straightforward. I've added an intrinsic
and a matching ISD node just like those for nearbyint() and friends. The
SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed
fround).
This will be used by the PowerPC backend in a follow-up commit.
llvm-svn: 187926
This fix is very lightweight. The same fix already existed for AddRec
but was missing for NAry expressions.
This is obviously an improvement and I'm unsure how to test compile
time problems.
Patch by Xiaoyi Guo!
llvm-svn: 187475
Call into ComputeMaskedBits to figure out which bits are set on both add
operands and determine if the value is a power-of-two-or-zero or not.
llvm-svn: 187445
Adds unit tests for it too.
Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.
llvm-svn: 187283
Merge consecutive if-regions if they contain identical statements.
Both transformations reduce number of branches. The transformation
is guarded by a target-hook, and is currently enabled only for +R600,
but the correctness has been tested on X86 target using a variety of
CPU benchmarks.
Patch by: Mei Ye
llvm-svn: 187278
The great thing about the SCEVAddRec No-Wrap flag (unlike nsw/nuw) is
that is can be preserved while normalizing (reassociating and
factoring).
The bad thing is that is can't be tranfered back to IR, which is one
of the reasons I don't like the concept of SCEVExpander.
Sorry, I can't think of a direct way to test this, which is why these
were FIXMEs for so long. I just think it's a good time to finally
clean it up.
llvm-svn: 186273
Address calculation for gather/scather in vectorized code can incur a
significant cost making vectorization unbeneficial. Add infrastructure to add
cost.
Tests and cost model for targets will be in follow-up commits.
radar://14351991
llvm-svn: 186187
ScalarEvolution::getSignedRange uses ComputeNumSignBits from ValueTracking on
ashr instructions. ComputeNumSignBits can return zero, but this case was not
handled correctly by the code in getSignedRange which was calling:
APInt::getSignedMinValue(BitWidth).ashr(NS - 1)
with NS = 0, resulting in an assertion failure in APInt::ashr.
Now, we just return the conservative result (as with NS == 1).
Another bug found by llvm-stress.
llvm-svn: 185955
(add nsw x, (and x, y)) isn't a power of two if x is zero, it's zero
(add nsw x, (xor x, y)) isn't a power of two if y has bits set that aren't set in x
llvm-svn: 185954
The symptom is seg-fault, and the root cause is that a SCEV contains a SCEVUnknown
which has null-pointer to a llvm::Value.
This is how the problem take place:
===================================
1). In the pristine input IR, there are two relevant instrutions Op1 and Op2,
Op1's corresponding SCEV (denoted as SCEV(op1)) is a SCEVUnknown, and
SCEV(Op2) contains SCEV(Op1). None of these instructions are dead.
Op1 : V1 = ...
...
Op2 : V2 = ... // directly or indirectly (data-flow) depends on Op1
2) Optimizer (LSR in my case) generates an instruction holding the equivalent
value of Op1, making Op1 dead.
Op1': V1' = ...
Op1: V1 = ... ; now dead)
Op2 : V2 = ... //Now deps on Op1', but the SCEV(Op2) still contains SCEV(Op1)
3) Op1 is deleted, and call-back function is called to reset
SCEV(Op1) to indicate it is invalid. However, SCEV(Op2) is not
invalidated as well.
4) Following pass get the cached, invalid SCEV(Op2), and try to manipulate it,
and cause segfault.
The fix:
========
It seems there is no clean yet inexpensive fix. I write to dev-list
soliciting good solution, unforunately no ack. So, I decide to fix this
problem in a brute-force way:
When ScalarEvolution::getSCEV is called, check if the cached SCEV
contains a invalid SCEVUnknow, if yes, remove the cached SCEV, and
re-evaluate the SCEV from scratch.
I compile buch of big *.c and *.cpp, fortunately, I don't see any increase
in compile time.
Misc:
=====
The reduced test-case has 2357 lines of code+other-stuff, too big to commit.
rdar://14283433
llvm-svn: 185843
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
llvm-svn: 185049
This is a band-aid to fix the most severe regressions we're seeing from basing
spill decisions on block frequencies, until we have a better solution.
llvm-svn: 184835
Fixes rdar:14036816, PR16130.
There is an opportunity to compute precise trip counts for 'or'
expressions and multi-exit loops.
rdar:14038809: Optimize trip count computation for multi-exit loops.
To do this we need to record the fact that ExitLimit assumes NSW. When
it does not we can safely assume that the loop trip count is the
minimum ExitLimt across all subexpressions and loop exits.
llvm-svn: 183060
Account for the cost of scaling factor in Loop Strength Reduce when rating the
formulae. This uses a target hook.
The default implementation of the hook is: if the addressing mode is legal, the
scaling factor is free.
<rdar://problem/13806271>
llvm-svn: 183045
Fixes PR16130 - clang produces incorrect code with loop/expression at -O2.
This is a 2+ year old bug that's now holding up the release. It's a
case where we knowingly made aggressive assumptions about undefined
behavior. These assumptions are wrong when SCEV is computing a
subexpression that does not directly control the branch. With this
fix, we avoid making assumptions in those cases but still optimize the
common case. SCEV's trip count computation for exits controlled by
'or' expressions is now analagous to the trip count computation for
loops with multiple exits. I had already fixed the multiple exit case
to be conservative.
llvm-svn: 182989
- llvm.loop.parallel metadata has been renamed to llvm.loop to be more generic
by making the root of additional loop metadata.
- Loop::isAnnotatedParallel now looks for llvm.loop and associated
llvm.mem.parallel_loop_access
- document llvm.loop and update llvm.mem.parallel_loop_access
- add support for llvm.vectorizer.width and llvm.vectorizer.unroll
- document llvm.vectorizer.* metadata
- add utility class LoopVectorizerHints for getting/setting loop metadata
- use llvm.vectorizer.width=1 to indicate already vectorized instead of
already_vectorized
- update existing tests that used llvm.loop.parallel and
llvm.vectorizer.already_vectorized
Reviewed by: Nadav Rotem
llvm-svn: 182802
Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.
Added analysis and code generation tests. Added documentation for the
new attribute.
llvm-svn: 182638
BitVector/SmallBitVector::reference::operator bool remain implicit since
they model more exactly a bool, rather than something else that can be
boolean tested.
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
One behavior change (YAMLParser) was made, though no test case is
included as I'm not sure how to reach that code path. Essentially any
comparison of llvm::yaml::document_iterators would be invalid if neither
iterator was at the end.
This helped uncover a couple of bugs in Clang - test cases provided for
those in a separate commit along with similar changes to `operator bool`
instances in Clang.
llvm-svn: 181868
the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
llvm-svn: 180881
We switch the order of offset and field type to make TBAAStructType node
(name, parent node, offset) similar to scalar TBAA node (name, parent node).
TypeIsImmutable is added to TBAAStructTag node.
llvm-svn: 180654
The tag is of type TBAANode when flag EnableStructPathTBAA is off.
Move implementation of MDNode::getMostGenericTBAA to TypeBasedAliasAnalysis.cpp
since it depends on how to interprete the MDNodes for scalar TBAA and
struct-path aware TBAA.
llvm-svn: 180068
PR15000 has a testcase where the time to compile was bordering on 30s. When I
dropped the limit value to 100, it became a much more managable 6s. The compile
time seems to increase in a roughly linear fashion based on increasing the limit
value. (See the runtimes below.)
So, let's lower the limit to 100 so that they can get a more reasonable compile
time.
Limit Value Time
----------- ----
10 0.9744s
20 1.8035s
30 2.3618s
40 2.9814s
50 3.6988s
60 4.5486s
70 4.9314s
80 5.8012s
90 6.4246s
100 7.0852s
110 7.6634s
120 8.3553s
130 9.0552s
140 9.6820s
150 9.8804s
160 10.8901s
170 10.9855s
180 12.0114s
190 12.6816s
200 13.2754s
210 13.9942s
220 13.8097s
230 14.3272s
240 15.7753s
250 15.6673s
260 16.0541s
270 16.7625s
280 17.3823s
290 18.8213s
300 18.6120s
310 20.0333s
320 19.5165s
330 20.2505s
340 20.7068s
350 21.1833s
360 22.9216s
370 22.2152s
380 23.9390s
390 23.4609s
400 24.0426s
410 24.6410s
420 26.5208s
430 27.7155s
440 26.4142s
450 28.5646s
460 27.3494s
470 29.7255s
480 29.4646s
490 30.5001s
llvm-svn: 179713
This is basically the same fix in three different places. We use a set to avoid
walking the whole tree of a big ConstantExprs multiple times.
For example: (select cmp, (add big_expr 1), (add big_expr 2))
We don't want to visit big_expr twice here, it may consist of thousands of
nodes.
The testcase exercises this by creating an insanely large ConstantExprs out of
a loop. It's questionable if the optimizer should ever create those, but this
can be triggered with real C code. Fixes PR15714.
llvm-svn: 179458
On certain architectures we can support efficient vectorized version of
instructions if the operand value is uniform (splat) or a constant scalar.
An example of this is a vector shift on x86.
We can efficiently support
for (i = 0 ; i < ; i += 4)
w[0:3] = v[0:3] << <2, 2, 2, 2>
but not
for (i = 0; i < ; i += 4)
w[0:3] = v[0:3] << x[0:3]
This patch adds a parameter to getArithmeticInstrCost to further qualify operand
values as uniform or uniform constant.
Targets can then choose to return a different cost for instructions with such
operand values.
A follow-up commit will test this feature on x86.
radar://13576547
llvm-svn: 178807
This is a compile time optimization. Before the patch we would do two traversals
on each call to aliasGEP - one with a set size parameter one with UnknownSize.
We can do better by first checking the result of the alias query with
UnknownSize.
Only if this one returns MayAlias do we query a second time using size and type.
This recovers an about 7% compile time regression on spec/ammp.
radar://12349960
llvm-svn: 178045
Fixes PR15570: SEGV: SCEV back-edge info invalid after dead code removal.
Indvars creates a SCEV expression for the loop's back edge taken
count, then determines that the comparison is always true and
removes it.
When loop-unroll asks for the expression, it contains a NULL
SCEVUnknkown (as a CallbackVH).
forgetMemoizedResults should invalidate the loop back edges expression.
llvm-svn: 177986
Add "evaluate-tbaa" to print alias queries of loads/stores. Alias queries
between pointers do not include TBAA tags.
Add testing case for "placement new". TBAA currently says NoAlias.
llvm-svn: 177772
This handles the case where we have an inbounds GEP with alloca as the pointer.
This fixes the regression in PR12750 and rdar://13286434.
Note that we can also fix this by handling some GEP cases in isKnownNonNull.
llvm-svn: 177321
This pass hasn't been touched in two years & would fail with assertions against
the current debug info metadata format (the only test case for it still uses a
many-versions old debug info metadata format)
llvm-svn: 176707
The "invariant.load" metadata indicates the memory unit being accessed is immutable.
A load annotated with this metadata can be moved across any store.
As I am not sure if it is legal to move such loads across barrier/fence, this
change dose not allow such transformation.
rdar://11311484
Thank Arnold for code review.
llvm-svn: 176562
This adds minimalistic support for PHI nodes to llvm.objectsize() evaluation
fingers crossed so that it does break clang boostrap again..
llvm-svn: 176408
We make the cost for calling libm functions extremely high as emitting the
calls is expensive and causes spills (on x86) so performance suffers. We still
vectorize important calls like ceilf and friends on SSE4.1. and fabs.
Differential Revision: http://llvm-reviews.chandlerc.com/D466
llvm-svn: 176287
This problem is exposed by r171325 which is already reverted. It is rather
hard to fabricate a testing case without it.
r171325 should *NOT* be resurrected as it has a potential problem although
this problem dosen't directly contribute to PR14988.
The bug is tracked by:
- rdar://13063553, and
- http://llvm.org/bugs/show_bug.cgi?id=14988
Thank Arnold for coming up a better solution to this problem. After
comparing this solution and my original proposal, I decided to ditch mine.
llvm-svn: 176225
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
llvm-svn: 176075
Check for reverse shuffles in the CostModel analysis pass and query
TargetTransform info accordingly. This allows us we can write test cases for
reverse shuffles.
radar://13171406
llvm-svn: 174932
This reverts r171041. This was a nice idea that didn't work out well.
Clang warnings need to be associated with warning groups so that they can
be selectively disabled, promoted to errors, etc. This simplistic patch didn't
allow for that. Enhancing it to provide some way for the backend to specify
a front-end warning type seems like overkill for the few uses of this, at
least for now.
llvm-svn: 174748
Adds a function to target transform info to query for the cost of address
computation. The cost model analysis pass now also queries this interface.
The code in LoopVectorize adds the cost of address computation as part of the
memory instruction cost calculation. Only there, we know whether the instruction
will be scalarized or not.
Increase the penality for inserting in to D registers on swift. This becomes
necessary because we now always assume that address computation has a cost and
three is a closer value to the architecture.
radar://13097204
llvm-svn: 174713
Prepare it for vectors of pointers and handle simple cases. We don't handle
complicated cases because accumulateConstantOffset bails on pointer vectors.
Fixes selfhost on i386.
llvm-svn: 174179
remaining use of AliasAnalysis concepts such as isIdentifiedObject to
prove pointer inequality.
@external_compare in test/Transforms/InstSimplify/compare.ll shows a simple
case where a noalias argument can be equal to a global variable address, and
while AliasAnalysis can get away with saying that these pointers don't alias,
instsimplify cannot say that they are not equal.
llvm-svn: 174122
We use constant folding to see if an intrinsic evaluates to the same value as a
constant that we know. If we don't take the undefinedness into account we get a
value that doesn't match the actual implementation, and miscompiled code.
This was uncovered by Chandler's simplifycfg changes.
llvm-svn: 173356
generic function calls and intrinsics. This is somewhat overlapping with
an existing intrinsic cost method, but that one seems targetted at
vector intrinsics. I'll merge them or separate their names and use cases
in a separate commit.
This sinks the test of 'callIsSmall' down into TTI where targets can
control it. The whole thing feels very hack-ish to me though. I've left
a FIXME comment about the fundamental design problem this presents. It
isn't yet clear to me what the users of this function *really* care
about. I'll have to do more analysis to figure that out. Putting this
here at least provides it access to proper analysis pass tools and other
such. It also allows us to more cleanly implement the baseline cost
interfaces in TTI.
With this commit, it is now theoretically possible to simplify much of
the inline cost analysis's handling of calls by calling through to this
interface. That conversion will have to happen in subsequent commits as
it requires more extensive restructuring of the inline cost analysis.
The CodeMetrics class is now really only in the business of running over
a block of code and aggregating the metrics on that block of code, with
the actual cost evaluation done entirely in terms of TTI.
llvm-svn: 173148
Previously we tried to infer it from the bit width size, with an added
IsIEEE argument for the PPC/IEEE 128-bit case, which had a default
value. This default value allowed bugs to creep in, where it was
inappropriate.
llvm-svn: 173138
is free. The whole CodeMetrics API should probably be reworked more, but
this is enough to allow deleting the duplicate code there for computing
whether an instruction is free.
All of the passes using this have been updated to pull in TTI and hand
it to the CodeMetrics stuff. Further, a dead CodeMetrics API
(analyzeFunction) is nuked for lack of users.
llvm-svn: 173036
analysis. How cute that it wasn't previously. ;]
Part of this confusion stems from the flattened header file tree. Thanks
to Benjamin for pointing out the goof on IRC, and we're considering
un-flattening the headers, so speak now if that would bug you.
llvm-svn: 173033
old CodeMetrics system. TTI has the specific advantage of being
extensible and customizable by targets to reflect target-specific cost
metrics.
llvm-svn: 173032
depend on and use other analyses (as long as they're either immutable
passes or CGSCC passes of course -- nothing in the pass manager has been
fixed here). Leverage this to thread TargetTransformInfo down through
the inline cost analysis.
No functionality changed here, this just threads things through.
llvm-svn: 173031
a dynamic analysis done on each call to the routine. However, now it can
use the standard pass infrastructure to reference other analyses,
instead of a silly setter method. This will become more interesting as
I teach it about more analysis passes.
This updates the two inliner passes to use the inline cost analysis.
Doing so highlights how utterly redundant these two passes are. Either
we should find a cheaper way to do always inlining, or we should merge
the two and just fiddle with the thresholds to get the desired behavior.
I'm leaning increasingly toward the latter as it would also remove the
Inliner sub-class split.
llvm-svn: 173030
lowered cost.
Currently, this is a direct port of the logic implementing
isInstructionFree in CodeMetrics. The hope is that the interface can be
improved (f.ex. supporting un-formed instruction queries) and the
implementation abstracted so that as we have test cases and target
knowledge we can expose increasingly accurate heuristics to clients.
I'll start switching existing consumers over and kill off the routine in
CodeMetrics in subsequent commits.
llvm-svn: 172998
Okay, here's how to reproduce the problem:
1) Build a Release (or Release+Asserts) version of clang in the normal way.
2) Using the clang & clang++ binaries from (1), build a Release (or
Release+Asserts) version of the same sources, but this time enable LTO ---
specify the `-flto' flag on the command line.
3) Run the ARC migrator tests:
$ arcmt-test --args -triple x86_64-apple-darwin10 -fsyntax-only -x objective-c++ ./src/tools/clang/test/ARCMT/cxx-rewrite.mm
You'll see that the output isn't correct (the whitespace is off).
The mis-compile is in the function `RewriteBuffer::RemoveText' in the
clang/lib/Rewrite/Core/Rewriter.cpp file. When that function and RewriteRope.cpp
are compiled with LTO and the `arcmt-test' executable is regenerated, you'll see
the error. When those files are not LTO'ed, then the output of the `arcmt-test'
is fine.
It is *really* hard to get a testcase out of this. I'll file a PR with what I
have currently.
--- Reverse-merging r172363 into '.':
U include/llvm/Analysis/MemoryBuiltins.h
U lib/Analysis/MemoryBuiltins.cpp
--- Reverse-merging r171325 into '.':
U test/Transforms/InstCombine/objsize.ll
G include/llvm/Analysis/MemoryBuiltins.h
G lib/Analysis/MemoryBuiltins.cpp
llvm-svn: 172756
Moving the X86CostTable to a common place, so that other back-ends
can share the code. Also simplifying it a bit and commoning up
tables with one and two types on operations.
llvm-svn: 172658
TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.
This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.
The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.
I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.
Yet again, almost all of the formatting changes brought to you by
clang-format. =]
llvm-svn: 171735
reachablity.
We conservatively approximate the reachability analysis by saying it is not
reachable if there is a single path starting from "From" and the path does not
reach "To".
rdar://12801584
llvm-svn: 171512
code that includes Intrinsics.gen directly.
This never showed up in my testing because the old Intrinsics.gen was
still kicking around in the make build system and was correct there. =[
Thankfully, some of the bots to clean rebuilds and that caught this.
llvm-svn: 171373
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Aside from moving the actual files, this patch only updates the build
system and the source file comments under lib/... that are relevant.
I'll be updating other docs and other files in smaller subsequnet
commits.
While I've tried to test this, but it is entirely possible that there
will still be some build system fallout.
Also, note that I've not changed the library name itself: libLLVMCore.a
is still the library name. I'd be interested in others' opinions about
whether we should rename this as well (I think we should, just not sure
what it might break)
llvm-svn: 171359
The new code is an improved copy of the code I deleted from Analysis/Loads.cpp.
One less compute-constant-gep-offset implementation. yay :)
llvm-svn: 171326
The later API is nicer than the former, and is correct regarding wrap-around offsets (if anyone cares).
There are a few more places left with duplicated code, which I'll remove soon.
llvm-svn: 171259
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
llvm-svn: 171253
propagating one of the values it simplified to a constant across
a myriad of instructions. Notably, ptrtoint instructions when we had
a constant pointer (say, 0) didn't propagate that, blocking a massive
number of down-stream optimizations.
This was uncovered when investigating why we fail to inline and delete
the boilerplate in:
void f() {
std::vector<int> v;
v.push_back(1);
}
It turns out most of the efforts I've made thus far to improve the
analysis weren't making it far purely because of this. After this is
fixed, the store-to-load forwarding patch enables LLVM to optimize the
above to an empty function. We still can't nuke a second push_back, but
for different reasons.
There is a very real chance this will cause somewhat noticable changes
in inlining behavior, so please let me know if you see regressions (or
improvements!) because of this patch.
llvm-svn: 171196
how to propagate constants through insert and extract value
instructions.
With the recent improvements to instsimplify, this allows inline cost
analysis to constant fold through intrinsic functions, including notably
the with.overflow intrinsic math routines which often show up inside of
STL abstractions. This is yet another piece in the puzzle of breaking
down the code for:
void f() {
std::vector<int> v;
v.push_back(1);
}
But it still isn't enough. There are a pile of bugs in inline cost still
blocking this.
llvm-svn: 171195
constant folding calls. Add the initial tests for this which show that
now instsimplify can simplify blindingly obvious code patterns expressed
with both intrinsics and library calls.
llvm-svn: 171194
are nice and decomposed so that we can simplify synthesized calls as
easily as actually call instructions. The internal utility still has the
same behavior, it just now operates on a more generic interface so that
I can extend the set of call simplifications that instsimplify knows
about.
llvm-svn: 171189
When the backend is used from clang, it should produce proper diagnostics
instead of just printing messages to errs(). Other clients may also want to
register their own error handlers with the LLVMContext, and the same handler
should work for warnings in the same way as the existing emitError methods.
llvm-svn: 171041
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
I introduced it in r166785. PR14291.
If TD is unavailable use getScalarSizeInBits, but don't optimize
pointers or vectors of pointers.
llvm-svn: 170586
In a previous thread it was pointed out that isPowerOfTwo is not a very precise
name since it can return false for powers of two if it is unable to show that
they are powers of two.
llvm-svn: 170093
been used in the first place. It simply was passed to the function and to the
recursive invocations. Simply drop the parameter and update the callers for the
new signature.
Patch by Saleem Abdulrasool!
llvm-svn: 169988