definition below all the header #include lines, lib/Analysis/...
edition.
This one has a bit extra as there were *other* #define's before #include
lines in addition to DEBUG_TYPE. I've sunk all of them as a block.
llvm-svn: 206843
After some discussions the preferred semantics of
the always_inline attribute is
inline always when the compiler can determine
that it it safe to do so.
llvm-svn: 206487
is set even when it contains a indirect branch.
The attribute overrules correctness concerns
like the escape of a local block address.
This is for rdar://16501761
llvm-svn: 206429
into a constant size alloca by inlining.
Ran a run over the testsuite, no results out of the noise, fixes
the testcase in the PR.
PR19115.
llvm-svn: 205710
The "noduplicate" attribute of call instructions is sometimes queried directly
and sometimes through the cannotDuplicate() predicate. This patch streamlines
all queries to use the cannotDuplicate() predicate. It also adds this predicate
to InvokeInst, to mirror what CallInst has.
llvm-svn: 204049
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
llvm-svn: 202815
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
llvm-svn: 202204
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
llvm-svn: 201827
cost so that they don't impact the vector bonus. Fundamentally, counting
unsimplified instructions is just *wrong*; it will continue to introduce
instability as things which do not generate code bizarrely impact
inlining. For example, sufficiently nested inlined functions could turn
off the vector bonus with lifetime markers just like the debug
intrinsics do. =/
This is a short-term tactical fix. Long term, I think we need to remove
the vector bonus entirely. That's a separate patch and discussion
though.
The patch to fix this provided by Dario Domizioli. I've added some
comments about the planned direction and used a heavily pruned form of
debug info intrinsics for the test case. While this debug info doesn't
work or "do" anything useful, it lets us easily test all manner of
interference easily, and I suspect this will not be the last time we
want to craft a pattern where debug info interferes with the inliner in
a problematic way.
llvm-svn: 200609
through an invoke instruction.
The original patch for this was written by Mark Seaborn, but I've
reworked his test case into the existing returns_twice test case and
implemented the fix by the prior refactoring to actually run the cost
analysis over invoke instructions, and then here fixing our detection of
the returns_twice attribute to work for both calls and invokes. We never
noticed because we never saw an invoke. =[
llvm-svn: 197216
handles terminator instructions.
The inline cost analysis inheritted some pretty rough handling of
terminator insts from the original cost analysis, and then made it much,
much worse by factoring all of the important analyses into a separate
instruction visitor. That instruction visitor never visited the
terminator.
This works fine for things like conditional branches, but for many other
things we simply computed The Wrong Value. First example are
unconditional branches, which should be free but were counted as full
cost. This is most significant for conditional branches where the
condition simplifies and folds during inlining. We paid a 1 instruction
tax on every branch in a straight line specialized path. =[
Oh, we also claimed that the unreachable instruction had cost.
But it gets worse. Let's consider invoke. We never applied the call
penalty. We never accounted for the cost of the arguments. Nope. Worse
still, we didn't handle the *correctness* constraints of not inlining
recursive invokes, or exception throwing returns_twice functions. Oops.
See PR18206. Sadly, PR18206 requires yet another fix, but this
refactoring is at least a huge step in that direction.
llvm-svn: 197215
(except functions marked always_inline).
Functions with 'optnone' must also have 'noinline' so they don't get
inlined into any other function.
Based on work by Andrea Di Biagio.
llvm-svn: 195046
generic function calls and intrinsics. This is somewhat overlapping with
an existing intrinsic cost method, but that one seems targetted at
vector intrinsics. I'll merge them or separate their names and use cases
in a separate commit.
This sinks the test of 'callIsSmall' down into TTI where targets can
control it. The whole thing feels very hack-ish to me though. I've left
a FIXME comment about the fundamental design problem this presents. It
isn't yet clear to me what the users of this function *really* care
about. I'll have to do more analysis to figure that out. Putting this
here at least provides it access to proper analysis pass tools and other
such. It also allows us to more cleanly implement the baseline cost
interfaces in TTI.
With this commit, it is now theoretically possible to simplify much of
the inline cost analysis's handling of calls by calling through to this
interface. That conversion will have to happen in subsequent commits as
it requires more extensive restructuring of the inline cost analysis.
The CodeMetrics class is now really only in the business of running over
a block of code and aggregating the metrics on that block of code, with
the actual cost evaluation done entirely in terms of TTI.
llvm-svn: 173148
analysis. How cute that it wasn't previously. ;]
Part of this confusion stems from the flattened header file tree. Thanks
to Benjamin for pointing out the goof on IRC, and we're considering
un-flattening the headers, so speak now if that would bug you.
llvm-svn: 173033