Some productions in the LangRef were using undefined terminals and non-terminals, which have been added to the EBNF.
The dialect type and dialect attribute productions matched precisely the same structure and have been deduplicated.
The production for ssa-id was ambiguous but the fix is trivial (merging the leading '%') and has been applied.
Closestensorflow/mlir#265
PiperOrigin-RevId: 282470892
This commit add `dialect-attribute-entry` requirements on function arguments,
function results, and function attributes to the documentation.
PiperOrigin-RevId: 281227740
Update LangRef to explicitly mention the type canonicalization rule applied to
MemRef types: identity maps do not contribute to type identification.
PiperOrigin-RevId: 280684904
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
This allows dialect-specific attributes to be attached to func results. (or more specifically, FunctionLike ops).
For example:
```
func @f() -> (i32 {my_dialect.some_attr = 3})
```
This attaches my_dialect.some_attr with value 3 to the first result of func @f.
Another more complex example:
```
func @g() -> (i32, f32 {my_dialect.some_attr = "foo", other_dialect.some_other_attr = [1,2,3]}, i1)
```
Here, the second result has two attributes attached.
PiperOrigin-RevId: 275564165
'_' is used frequently enough as the separator of words in symbols.
We should allow it in dialect symbols when considering pretty printing.
Also updated LangRef.md regarding pretty form.
PiperOrigin-RevId: 275312494
Create a ComplexType for table gen references. Include an AnyComplex type
to check whether the resulting tensor can be complex. Expand tensors to
allow complex types.
PiperOrigin-RevId: 275144804
The restriction that symbols can only have identifier names is arbitrary, and artificially limits the names that a symbol may have. This change adds support for parsing and printing symbols that don't fit in the 'bare-identifier' grammar by printing the reference in quotes, e.g. @"0_my_reference" can now be used as a symbol name.
PiperOrigin-RevId: 273644768
MLIR uses symbol references to model references to many global entities, such as functions/variables/etc. Before this change, there is no way to actually reason about the uses of such entities. This change provides a walker for symbol references(via SymbolTable::walkSymbolUses), as well as 'use_empty' support(via SymbolTable::symbol_use_empty). It also resolves some deficiencies in the LangRef definition of SymbolRefAttr, namely the restrictions on where a SymbolRefAttr can be stored, ArrayAttr and DictionaryAttr, and the relationship with operations containing the SymbolTable trait.
PiperOrigin-RevId: 273549331
This CL implements the last remaining bit of the [strided memref proposal](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
The syntax is a bit more explicit than what was originally proposed and resembles:
`memref<?x?xf32, offset: 0 strides: [?, 1]>`
Nonnegative strides and offsets are currently supported. Future extensions will include negative strides.
This also gives a concrete example of syntactic sugar for the ([RFC] Proposed Changes to MemRef and Tensor MLIR Types)[https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/-wKHANzDNTg].
The underlying implementation still uses AffineMap layout.
PiperOrigin-RevId: 272717437
Module names are optional so it makes more sense to take and return an optional
any time the name is involved. Also update the language reference to reflect
the module names.
PiperOrigin-RevId: 272684698
- introduce splat op in standard dialect (currently for int/float/index input
type, output type can be vector or statically shaped tensor)
- implement LLVM lowering (when result type is 1-d vector)
- add constant folding hook for it
- while on Ops.cpp, fix some stale names
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#141
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/141 from bondhugula:splat 48976a6aa0a75be6d91187db6418de989e03eb51
PiperOrigin-RevId: 270965304
- add more examples for affine layout maps showing various use
cases
- affine map range sizes were removed from code, but examples in
LangRef weren't updated
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#142
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/142 from bondhugula:doc 3291a8784bc69883f7a7cead21445fc8118aaad2
PiperOrigin-RevId: 270548991
* Add a section on dialect attribute values and attribute aliases
* Move FloatAttr into its alphabetically correct place
* Add a "Standard Attribute Values" section
PiperOrigin-RevId: 264959306
* Alphabetize the type definitions
* Make 'Dialect specific types' a type-system subsection
* Merge Builtin types and Standard types
PiperOrigin-RevId: 264947721
Both sections are out-of-date and need to be updated. The dialect section is particularly bad in that it never actually mentions what a 'Dialect' is.
PiperOrigin-RevId: 264937905
The LangRef should contain documentation about the core system, and standard ops is a dialect just like any other. This will also simplify the transition when StandardOps is eventually split apart.
PiperOrigin-RevId: 264514988
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
The initial version of this commit was missing support for float literals that
used to be printed in decimal notation as a fallback, but ended up being
printed in hexadecimal format which became the fallback for special values.
The decimal fallback behavior was not exercised by tests. It is currently
reinstated and tested by the newly added test @f32_potential_precision_loss in
parser.mlir.
PiperOrigin-RevId: 260790900
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
PiperOrigin-RevId: 260018802
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.
PiperOrigin-RevId: 257650017
This is an important step in allowing for the top-level of the IR to be extensible. FuncOp and ModuleOp contain all of the necessary functionality, while using the existing operation infrastructure. As an interim step, many of the usages of Function and Module, including the name, will remain the same. In the future, many of these will be relaxed to allow for many different types of top-level operations to co-exist.
PiperOrigin-RevId: 256427100
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.
Example:
dense<5> : tensor<i32>
dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
* There is no longer a need to explicitly remap function attrs.
- This removes a potentially expensive call from the destructor of Function.
- This will enable some interprocedural transformations to now run intraprocedurally.
- This wasn't scalable and forces dialect defined attributes to override
a virtual function.
* Replacing a function is now a trivial operation.
* This is a necessary first step to representing functions as operations.
--
PiperOrigin-RevId: 249510802
Restructure the Regions section in LangRef to avoid having a wall of text and
reflect a recent evolution of the design. Unspecify region types, that are put
on hold until use cases arise.
Update the Rationale doc with a list of design decisions related to regions.
Separately list the design alternatives that were considered and discarded due
to the lack of existing use cases.
--
PiperOrigin-RevId: 247943144
The generic form of operations currently supports optional regions to be
located after the operation type. As we are going to add a type to each
region in a leading position in the region syntax, similarly to functions, it
becomes ambiguous to have regions immediately after the operation type. Put
regions between operands the optional list of successors in the generic
operation syntax and wrap them in parentheses. The effect on the exisitng IR
syntax is minimal since only three operations (`affine.for`, `affine.if` and
`gpu.kernel`) currently use regions.
--
PiperOrigin-RevId: 246787087
Region is the generalization of a function body (a list of blocks forming a CFG) to be allowed to be enclosed inside any operation. This nesting of IR is already leveraged in the affine dialect to support `affine.for`, `affine.if`, and `gpu.launch` operations.
--
PiperOrigin-RevId: 246766830
Instead, fold such operations. This way callers don't need to conditionally create cast operations depending on if a value already has the target type.
Also, introduce areCastCompatible to allow cast users to verify that the generated op will be valid before creating the operation.
TESTED with unit tests
--
PiperOrigin-RevId: 245606133
none-type ::= `none`
The `none` type is a unit type, i.e. a type with exactly one possible value, where its value does not have a defined dynamic representation.
--
PiperOrigin-RevId: 245599248