Changing -ccc-install-dir to affect cc1's resource-dir setting broke our
internal LNT tests. After discussing the situation with Jim, we've decided to
pursue an alternate approach. We really want the resource-dir to be located
relative to clang, even when using -ccc-install-dir, but we're going to
add a fallback setting for the libc++ headers if they don't exist alongside
the compiler.
llvm-svn: 177815
to an out-parameter using the indirect-writeback conversion,
and we copied the current value of the variable to the temporary,
make sure that we register an intrinsic use of that value with
the optimizer so that the value won't get released until we have
a chance to retain it.
rdar://13195034
llvm-svn: 177813
In C, comparisons between signed and unsigned numbers are always done in
unsigned-space. Thus, we should know that "i >= 0U" is always true, even
if 'i' is signed. Similarly, "u >= 0" is also always true, even though '0'
is signed.
Part of <rdar://problem/13239003> (false positives related to std::vector)
llvm-svn: 177806
We can support the full range of comparison operations between two locations
by canonicalizing them as subtraction, as in the previous commit.
This won't work (well) if either location includes an offset, or (again)
if the comparisons are not consistent about which region comes first.
<rdar://problem/13239003>
llvm-svn: 177803
Canonicalizing these two forms allows us to better model containers like
std::vector, which use "m_start != m_finish" to implement empty() but
"m_finish - m_start" to implement size(). The analyzer should have a
consistent interpretation of these two symbolic expressions, even though
it's not properly reasoning about either one yet.
The other unfortunate thing is that while the size() expression will only
ever be written "m_finish - m_start", the comparison may be written
"m_finish == m_start" or "m_start == m_finish". Right now the analyzer does
not attempt to canonicalize those two expressions, since it doesn't know
which length expression to pick. Doing this correctly will probably require
implementing unary minus as a new SymExpr kind (<rdar://problem/12351075>).
For now, the analyzer inverts the order of arguments in the comparison to
build the subtraction, on the assumption that "begin() != end()" is
written more often than "end() != begin()". This is purely speculation.
<rdar://problem/13239003>
llvm-svn: 177801
We just treat this as opaque symbols, but even that allows us to handle
simple cases where the same condition is tested twice. This is very common
in the STL, which means that any project using the STL gets spurious errors.
Part of <rdar://problem/13239003>.
llvm-svn: 177800
linker via --dynamic-list instead of using --export-dynamic. This reduces the
size of the dynamic symbol table, and thus of the binary (in some cases by up
to ~30%).
llvm-svn: 177783
isIncompleteType() returns true or false for template types depending on whether
the type is instantiated yet. In this context, that's arbitrary. The better way
to check for a complete type is RequireCompleteType().
Thanks to Eli Friedman for noticing this!
<rdar://problem/12700799>
llvm-svn: 177768
Summary:
For non-dynamic classes (no virtual bases), member data pointers are
simple offsets from the base of the record. Dynamic classes use an
aggregate for member data pointers and are therefore currently
unsupported.
Unlike Itanium, the ms ABI uses 0 to represent null for polymorphic
classes. Non-polymorphic classes use -1 like Itanium, since 0 is a
valid field offset.
Reviewers: rjmccall
CC: timurrrr, cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D558
llvm-svn: 177753
for self.GetterName where GetterName is the getter method
for a property with name different from the property name
(declared via a property getter attribute) // rdar://12791315
llvm-svn: 177744
picking up cleanups from earlier in the statement. Also fix a
crash-on-invalid where a reference to an invalid decl from an
enclosing scope was causing an expression to fail to build, but
only *after* a cleanup was registered from that statement,
causing an assertion downstream.
The crash-on-valid is rdar://13459289.
llvm-svn: 177692
Clang's <stddef.h> provides definitions for the C standard library
types size_t, ptrdiff_t, and wchar_t. However, the system's C standard
library headers tend to provide the same typedefs, and the two
generally avoid each other using the macros
_SIZE_T/_PTRDIFF_T/_WCHAR_T. With modules, however, we need to see
*all* of the places where these types are defined, so provide the
typedefs (ignoring the macros) when modules are enabled.
llvm-svn: 177686
We now put the Clang module cache in
<system-temp-directory>/org.llvm.clang/ModuleCache. Perhaps some day
there will be other caches under <system-temp-directory>/org.llvm.clang>.
llvm-svn: 177671
is issused for on overriding 'readwrite'
property which is not auto-synthesized.
Buttom line is that if hueristics determine
that there will be a user implemented setter,
no warning will be issued. // rdar://13388503
llvm-svn: 177662
This isn't necessary & with the next change to LLVM the DW_TAG_file_type entry
won't be emitted at all - only the raw filename/directory pair, so match on
that directly instead.
llvm-svn: 177609
* libclang_rt-san-* is sanitizer_common, and is linked in only if no other
sanitizer runtime is present.
* libclang_rt-ubsan-* is the piece of the runtime which doesn't depend on
a C++ ABI library, and is always linked in.
* libclang_rt-ubsan_cxx-* is the piece of the runtime which depends on a
C++ ABI library, and is only linked in when linking a C++ binary.
This change also switches us to using -whole-archive for the ubsan runtime
(which is made possible by the above split), and switches us to only linking
the sanitizer runtime into the main binary and not into DSOs (which is made
possible by using -whole-archive).
The motivation for this is to only link a single copy of sanitizer_common
into any binary. This is becoming important now because we want to share
more state between multiple sanitizers in the same process (for instance,
we want a single shared output mutex).
The Darwin ubsan runtime is unchanged; because we use a DSO there, we don't
need this complexity.
llvm-svn: 177605
This fixes some mistaken condition logic in RegionStore that caused
global variables to be invalidated when /any/ region was invalidated,
rather than only as part of opaque function calls. This was only
being used by CStringChecker, and so users will now see that strcpy()
and friends do not invalidate global variables.
Also, add a test case we don't handle properly: explicitly-assigned
global variables aren't being invalidated by opaque calls. This is
being tracked by <rdar://problem/13464044>.
llvm-svn: 177572
Due to improper modelling of copy constructors (specifically, their
const reference arguments), we were producing spurious leak warnings
for allocated memory stored in structs. In order to silence this, we
decided to consider storing into a struct to be the same as escaping.
However, the previous commit has fixed this issue and we can now properly
distinguish leaked memory that happens to be in a struct from a buffer
that escapes within a struct wrapper.
Originally applied in r161511, reverted in r174468.
<rdar://problem/12945937>
llvm-svn: 177571
In this case, the value of 'x' may be changed after the call to indirectAccess:
struct Wrapper {
int *ptr;
};
void indirectAccess(const Wrapper &w);
void test() {
int x = 42;
Wrapper w = { x };
clang_analyzer_eval(x == 42); // TRUE
indirectAccess(w);
clang_analyzer_eval(x == 42); // UNKNOWN
}
This is important for modelling return-by-value objects in C++, to show
that the contents of the struct are escaping in the return copy-constructor.
<rdar://problem/13239826>
llvm-svn: 177570
The #line directive is mostly for backend testing (keeping these files matching
should simplify maintenance somewhat) though the corresponding backend test
improvement/update doesn't verify the file information directly just yet.
Coming in a later iteration.
llvm-svn: 177559
For constructors/desctructors that return 'this', if there exists a callsite
that returns 'this' and is immediately before the return instruction, make
sure we are using the return value from the callsite.
We don't need to keep 'this' alive through the callsite. It also enables
optimizations in the backend, such as tail call optimization.
Updated from r177211.
rdar://12818789
llvm-svn: 177541