- Moved TypeRange into its own header/cpp file, and add hashing support.
- Change FunctionType::get() and TupleType::get() to use TypeRange
Differential Revision: https://reviews.llvm.org/D85075
Always define a remapping for the memref replacement (`indexRemap`)
with the proper number of inputs, including all the `outerIVs`, so that
the number of inputs and the operands provided for the map don't mismatch.
Reviewed By: bondhugula, andydavis1
Differential Revision: https://reviews.llvm.org/D85177
Introduces the expand and compress operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D84888
Simplify semi-affine expression for the operations like ceildiv,
floordiv and modulo by any given symbol by checking divisibilty by that
symbol.
Some properties used in simplification are:
1) Commutative property of the floordiv and ceildiv:
((expr1 floordiv expr2) floordiv expr3 ) = ((expr1 floordiv expr3) floordiv expr2)
((expr1 ceildiv expr2) ceildiv expr3 ) = ((expr1 ceildiv expr3) ceildiv expr2)
While simplification if operations are different no simplification is
possible as there is no property that simplify expressions like these:
((expr1 ceildiv expr2) floordiv expr3) or ((expr1 floordiv expr2)
ceildiv expr3).
2) If both expr1 and expr2 are divisible by the expr3 then:
(expr1 % expr2) / expr3 = ((expr1 / expr3) % (expr2 / expr3))
where / is divide symbol.
3) If expr1 is divisible by expr2 then expr1 % expr2 = 0.
Signed-off-by: Yash Jain <yash.jain@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D84920
The `splitFullAndPartialTransferPrecondition` has a restrictive condition to
prevent the pattern to be applied recursively if it is nested under an scf.IfOp.
Relaxing the condition to the immediate parent op must not be an scf.IfOp lets
the pattern be applied more generally while still preventing recursion.
Differential Revision: https://reviews.llvm.org/D85209
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = linalg.fill(%extra_alloc, %pad)
%3 = subview %view [...][...][...]
linalg.copy(%3, %alloc)
memref_cast %extra_alloc: memref<B...> to memref<A...>
scf.yield %4 : memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
These are intended to smoothen the transition and may be removed in the future
in favor of more MLIR-compatible APIs. They intentionally have the same
semantics as the existing functions, which must remain stable until the
transition is complete.
Depends On D85019
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85020
With new LLVM dialect type modeling, the dialect types no longer wrap LLVM IR
types. Therefore, they need to be translated to and from LLVM IR during export
and import. Introduce the relevant functionality for translating types. It is
currently exercised by an ad-hoc type translation roundtripping test that will
be subsumed by the actual translation test when the type system transition is
complete.
Depends On D84339
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D85019
The bug was not noticed because we didn't have a lot of custom type conversions
directly to LLVM dialect.
Differential Revision: https://reviews.llvm.org/D85192
Lowering of newly defined Conv ops in TC syntax to standard
dialect is not supported and therefore this commit adds support
for it.
Differential Revision: https://reviews.llvm.org/D84840
Remove use of iterator::difference_type to know where to insert a
moved or erased block during undo actions.
Differential Revision: https://reviews.llvm.org/D85066
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
%3 = vector.type_cast %extra_alloc : memref<...> to
memref<vector<...>> store %2, %3[] : memref<vector<...>> %4 =
memref_cast %extra_alloc: memref<B...> to memref<A...> scf.yield %4 :
memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
Differential Revision: https://reviews.llvm.org/D84631
This reverts commit 35b65be041.
Build is broken with -DBUILD_SHARED_LIBS=ON with some undefined
references like:
VectorTransforms.cpp:(.text._ZN4llvm12function_refIFvllEE11callback_fnIZL24createScopedInBoundsCondN4mlir25VectorTransferOpInterfaceEE3$_8EEvlll+0xa5): undefined reference to `mlir::edsc::op::operator+(mlir::Value, mlir::Value)'
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This model makes thread-safe type manipulation hard and is being
progressively replaced with a cleaner MLIR model that replicates the type
system. Introduce a set of classes reflecting the LLVM IR type system in MLIR
instead of wrapping the existing types. These are currently introduced as
separate classes without affecting the dialect flow, and are exercised through
a test dialect. Once feature parity is reached, the old implementation will be
gradually substituted with the new one.
Depends On D84171
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D84339
This revision adds a transformation and a pattern that rewrites a "maybe masked" `vector.transfer_read %view[...], %pad `into a pattern resembling:
```
%1:3 = scf.if (%inBounds) {
scf.yield %view : memref<A...>, index, index
} else {
%2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
%3 = vector.type_cast %extra_alloc : memref<...> to
memref<vector<...>> store %2, %3[] : memref<vector<...>> %4 =
memref_cast %extra_alloc: memref<B...> to memref<A...> scf.yield %4 :
memref<A...>, index, index
}
%res= vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
```
where `extra_alloc` is a top of the function alloca'ed buffer of one vector.
This rewrite makes it possible to realize the "always full tile" abstraction where vector.transfer_read operations are guaranteed to read from a padded full buffer.
The extra work only occurs on the boundary tiles.
Differential Revision: https://reviews.llvm.org/D84631
This patch handles loopControl and selectionControl in parsing and
printing. In order to reuse the functionality, and avoid handling cases when
`{` of the region is parsed as a dictionary attribute, `control` keyword was
introduced.`None` is a default control attribute. This functionality can be
later extended to `spv.func`.
Also, loopControl and selectionControl can now be (de)serialized.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84175
This change allow CooperativeMatrix Load/Store operations to use pointer type
that may not match the matrix element type. This allow us to declare buffer
with a larger type size than the matrix element type. This follows SPIR-V spec
and this is needed to be able to use cooperative matrix in combination with
shared local memory efficiently.
Differential Revision: https://reviews.llvm.org/D84993
Replaced definition of named ND ConvOps with tensor comprehension
syntax which reduces boilerplate code significantly. Furthermore,
new ops to support TF convolutions added (without strides and dilations).
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84628
Now that we can have a memref of index type, we no longer need to materialize shapes in i64 and then index_cast.
Differential Revision: https://reviews.llvm.org/D84938
-- Introduces a pass that normalizes the affine layout maps to the identity layout map both within and across functions by rewriting function arguments and call operands where necessary.
-- Memref normalization is now implemented entirely in the module pass '-normalize-memrefs' and the limited intra-procedural version has been removed from '-simplify-affine-structures'.
-- Run using -normalize-memrefs.
-- Return ops are not handled and would be handled in the subsequent revisions.
Signed-off-by: Abhishek Varma <abhishek.varma@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D84490
When lowering to the standard dialect, we currently support only the extent
tensor variant of the shape.rank operation. This change lets the conversion
pattern fail in a well-defined manner.
Differential Revision: https://reviews.llvm.org/D84852
This patch introduces new intrinsics in LLVM dialect:
- `llvm.intr.floor`
- `llvm.intr.maxnum`
- `llvm.intr.minnum`
- `llvm.intr.smax`
- `llvm.intr.smin`
These intrinsics correspond to SPIR-V ops from GLSL
extended instruction set (`spv.GLSL.Floor`, `spv.GLSL.FMax`,
`spv.GLSL.FMin`, `spv.GLSL.SMax` and `spv.GLSL.SMin`
respectively). Also conversion patterns for them were added.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84661
This is a second patch on conversion of GLSL ops to LLVM dialect.
It introduces patterns to convert `spv.InverseSqrt` and `spv.Tanh`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84633
This is the first patch that adds support for GLSL extended
instruction set ops. These are direct conversions, apart from `spv.Tan`
that is lowered to `sin() / cos()`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84627
This commit is part of a greater project which aims to add
full end-to-end support for convolutions inside mlir. The
reason behind having conv ops for each rank rather than
having one generic ConvOp is to enable better optimizations
for every N-D case which reflects memory layout of input/kernel
buffers better and simplifies code as well. We expect plain linalg.conv
to be progressively retired.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D83879
The lowering does not support all types for its source operations. This change
makes the patterns fail in a well-defined manner.
Differential Revision: https://reviews.llvm.org/D84443
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This is model makes thread-safe type manipulation hard and is
being progressively replaced with a cleaner MLIR model that replicates the type
system. In the new model, LLVMType will no longer have an underlying LLVM IR
type. Restrict access to this type in the current model in preparation for the
change.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84389
Operating on indices and extent tensors directly, the type conversion is no
longer needed for the supported cases.
Differential Revision: https://reviews.llvm.org/D84442
This adds conversions for const_size and to_extent_tensor. Also, cast-like operations are now folded away if the source and target types are the same.
Differential Revision: https://reviews.llvm.org/D84745
Conversion of `spv.BranchConditional` now supports branch weights
that are mapped to weights vector in `llvm.cond_br`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84657
Added a check for 'Function' storage class in `spv.globalVariable`
verifier since it only can be used with `spv.Variable`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84731
This patch adds support of Volatile and Nontemporal
memory accesses to `spv.Load` and `spv.Store`. These attributes are
modelled with a `volatile` and `nontemporal` flags.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84739
- Add getArgumentTypes() to Region (missed from before)
- Adopt Region argument API in `hasMultiplyAddBody`
- Fix 2 typos in comments
Differential Revision: https://reviews.llvm.org/D84807
The MemRefDataFlow pass does store to load forwarding
only for affine store/loads. This patch updates the pass
to use affine read/write interface which enables vector
forwarding.
Reviewed By: dcaballe, bondhugula, ftynse
Differential Revision: https://reviews.llvm.org/D84302
For the purpose of vector transforms, the Tablegen-based infra is subsumed by simple C++ pattern application. Deprecate declarative transforms whose complexity does not pay for itself.
Differential Revision: https://reviews.llvm.org/D84753