This patch adds a `Depth` field (default value 2) to `ContextSensitiveOptions`, allowing context-sensitive analysis of functions that call other functions. This also requires replacing the `DeclCtx` field on `Environment` with a `CallString` field that contains a vector of decl contexts, to ensure that the analysis doesn't try to analyze recursive or mutually recursive calls (which would result in a crash, due to the way we handle `StorageLocation`s).
Reviewed By: xazax.hun
Differential Revision: https://reviews.llvm.org/D131809
This patch restructures `DataflowAnalysisOptions` and `TransferOptions` to use `llvm::Optional`, in preparation for adding more sub-options to the `ContextSensitiveOptions` struct introduced here.
Reviewed By: sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D131779
This patch modifies `Environment`'s `pushCall` method to pass over arguments that are missing storage locations, instead of crashing.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D131600
This patch adds the ability to context-sensitively analyze constructor bodies, by changing `pushCall` to allow both `CallExpr` and `CXXConstructExpr`, and extracting the main context-sensitive logic out of `VisitCallExpr` into a new `transferInlineCall` method which is now also called at the end of `VisitCXXConstructExpr`.
Reviewed By: ymandel, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D131438
This patch modifies `Environment`'s `pushCall` method to pass over arguments that are missing storage locations, instead of crashing.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D131600
This patch adds the ability to context-sensitively analyze constructor bodies, by changing `pushCall` to allow both `CallExpr` and `CXXConstructExpr`, and extracting the main context-sensitive logic out of `VisitCallExpr` into a new `transferInlineCall` method which is now also called at the end of `VisitCXXConstructExpr`.
Reviewed By: ymandel, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D131438
This patch adds the ability to context-sensitively analyze method bodies, by moving `ThisPointeeLoc` from `DataflowAnalysisContext` to `Environment`, and adding code in `pushCall` to set it.
Reviewed By: ymandel, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D131170
This patch adds a `ReturnLoc` field to the `Environment`, serving a similar to the `ThisPointeeLoc` field in the `DataflowAnalysisContext`. It then uses that (along with a new `VisitReturnStmt` method in `TransferVisitor`) to handle non-`void`-returning functions in context-sensitive analysis.
Reviewed By: ymandel, sgatev
Differential Revision: https://reviews.llvm.org/D130600
Make the types of the post visit callbacks in `transferBlock` and
`runTypeErasedDataflowAnalysis` consistent.
Differential Revision: https://reviews.llvm.org/D131014
Reviewed-by: ymandel, xazax.hun, gribozavr2
This patch enables context-sensitive analysis of multiple different calls to the same function (see the `ContextSensitiveSetBothTrueAndFalse` example in the `TransferTest` suite) by replacing the `Environment` copy-assignment with a call to the new `popCall` method, which `std::move`s some fields but specifically does not move `DeclToLoc` and `ExprToLoc` from the callee back to the caller.
To enable this, the `StorageLocation` for a given parameter needs to be stable across different calls to the same function, so this patch also improves the modeling of parameter initialization, using `ReferenceValue` when necessary (for arguments passed by reference).
This approach explicitly does not work for recursive calls, because we currently only plan to use this context-sensitive machinery to support specialized analysis models we write, not analysis of arbitrary callees.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130726
This patch adds initial support for context-sensitive analysis of simple functions whose definition is available in the translation unit, guarded by the `ContextSensitive` flag in the new `TransferOptions` struct. When this option is true, the `VisitCallExpr` case in the builtin transfer function has a fallthrough case which checks for a direct callee with a body. In that case, it constructs a CFG from that callee body, uses the new `pushCall` method on the `Environment` to make an environment to analyze the callee, and then calls `runDataflowAnalysis` with a `NoopAnalysis` (disabling context-sensitive analysis on that sub-analysis, to avoid problems with recursion). After the sub-analysis completes, the `Environment` from its exit block is simply assigned back to the environment at the callsite.
The `pushCall` method (which currently only supports non-method functions with some restrictions) maps the `SourceLocation`s for all the parameters to the existing source locations for the corresponding arguments from the callsite.
This patch adds a few tests to check that this context-sensitive analysis works on simple functions. More sophisticated functionality will be added later; the most important next step is to explicitly model context in some fields of the `DataflowAnalysisContext` class, as mentioned in a `FIXME` comment in the `pushCall` implementation.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130306
Depends On D130305
This patch adds initial support for context-sensitive analysis of simple functions whose definition is available in the translation unit, guarded by the `ContextSensitive` flag in the new `TransferOptions` struct. When this option is true, the `VisitCallExpr` case in the builtin transfer function has a fallthrough case which checks for a direct callee with a body. In that case, it constructs a CFG from that callee body, uses the new `pushCall` method on the `Environment` to make an environment to analyze the callee, and then calls `runDataflowAnalysis` with a `NoopAnalysis` (disabling context-sensitive analysis on that sub-analysis, to avoid problems with recursion). After the sub-analysis completes, the `Environment` from its exit block is simply assigned back to the environment at the callsite.
The `pushCall` method (which currently only supports non-method functions with some restrictions) first calls `initGlobalVars`, then maps the `SourceLocation`s for all the parameters to the existing source locations for the corresponding arguments from the callsite.
This patch adds a few tests to check that this context-sensitive analysis works on simple functions. More sophisticated functionality will be added later; the most important next step is to explicitly model context in some fields of the `DataflowAnalysisContext` class, as mentioned in a `TODO` comment in the `pushCall` implementation.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130306
Previously we used to desugar implications and biconditionals into
equivalent CNF/DNF as soon as possible. However, this desugaring makes
debug output (Environment::dump()) less readable than it could be.
Therefore, it makes sense to keep the sugared representation of a
boolean formula, and desugar it in the solver.
Reviewed By: sgatev, xazax.hun, wyt
Differential Revision: https://reviews.llvm.org/D130519
BooleanFormula::addClause has an invariant that a clause has no duplicated
literals. When the solver was desugaring a formula into CNF clauses, it
could construct a clause with such duplicated literals in two cases.
Reviewed By: sgatev, ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130522
Fix `MapLattice` API to return `std::pair<iterator, bool>`,
allowing users to detect when an element has been inserted without
performing a redundant map lookup.
Differential Revision: https://reviews.llvm.org/D130497
This patch connects the check for const-correctness with the new general
utility to add `const` to variables.
The code-transformation is only done, if the detected variable for const-ness
is not part of a group-declaration.
The check allows to control multiple facets of adding `const`, e.g. if pointers themself should be
marked as `const` if they are not changed.
Reviewed By: njames93
Differential Revision: https://reviews.llvm.org/D54943
This patch moves `Analysis/FlowSensitive/NoopAnalysis.h` from `clang/unittests/` to `clang/include/clang/`, so that we can use it for doing context-sensitive analysis.
Reviewed By: ymandel, gribozavr2, sgatev
Differential Revision: https://reviews.llvm.org/D130304
This reverts commit 19e21887eb. I
accidentally landed the non-final version of the patch that used
decomposition declarations (not yet usable in LLVM/Clang source).
A truth assignment to atomic boolean values which satisfy `Constraints` will be returned if found by the solver.
This gives us more information which can be helpful for debugging or constructing warning messages.
Reviewed By: hlopko, gribozavr2, sgatev
Differential Revision: https://reviews.llvm.org/D129180
Treat `std::nullptr_t` as a regular scalar type to avoid tripping
assertions when analyzing code that uses `std::nullptr_t`.
Differential Revision: https://reviews.llvm.org/D129097
Many of our tests are currently written using `TEST_F` where the test fixture class doesn't have any `SetUp` or `TearDown` methods, and just one helper method. In those cases, this patch deletes the class and pulls its method out into a standalone function, using `TEST` instead of `TEST_F`.
There are still a few test files leftover in `clang/unittests/Analysis/FlowSensitive/` that use `TEST_F`:
- `DataflowAnalysisContextTest.cpp` because the class contains a `Context` field which is used
- `DataflowEnvironmentTest.cpp` because the class contains an `Environment` field which is used
- `SolverTest.cpp` because the class contains a `Vals` field which is used
- `TypeErasedDataflowAnalysisTest.cpp` because there are several different classes which all share the same method name
Reviewed By: ymandel, sgatev
Differential Revision: https://reviews.llvm.org/D128924
This patch deletes the now-unused `SourceLocationsLattice` class, along with its containing files and surrounding helper functions and tests.
Reviewed By: xazax.hun, ymandel, sgatev, gribozavr2
Differential Revision: https://reviews.llvm.org/D128448
Followup to D128352. This patch pulls the `NoopLattice` class out from the `NoopAnalysis.h` test file into its own `NoopLattice.h` source file, and uses it to replace usage of `SourceLocationsLattice` in `UncheckedOptionalAccessModel`.
Reviewed By: ymandel, sgatev, gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128356
Followup to D128352. This patch pulls the `NoopLattice` class out from the `NoopAnalysis.h` test file into its own `NoopLattice.h` source file, and uses it to replace usage of `SourceLocationsLattice` in `UncheckedOptionalAccessModel`.
Reviewed By: ymandel, sgatev, gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128356
This patch adds an optional `PostVisitStmt` parameter to the `runTypeErasedDataflowAnalysis` function, which does one more pass over all statements in the CFG after a fixpoint is reached. It then defines a `diagnose` method for the optional model in a new `UncheckedOptionalAccessDiagnosis` class, but only integrates that into the tests and not the actual optional check for `clang-tidy`. That will be done in a followup patch.
The primary motivation is to separate the implementation of the unchecked optional access check into two parts, to allow for further refactoring of just the model part later, while leaving the checking part alone. Currently there is duplication between the `transferUnwrapCall` and `diagnoseUnwrapCall` functions, but that will be dealt with in the followup.
Because diagnostics are now all gathered into one collection rather than being populated at each program point like when computing a fixpoint, this patch removes the usage of `Pair` and `UnorderedElementsAre` from the optional model tests, and instead modifies all their expectations to simply check the stringified set of diagnostics against a single string, either `"safe"` or some concatenation of `"unsafe: input.cc:y:x"`. This is not ideal as it loses any connection to the `/*[[check]]*/` annotations in the source strings, but it does still retain the source locations from the diagnostic strings themselves.
Reviewed By: sgatev, gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D127898
When a `nullptr` is assigned to a pointer variable, it is wrapped in a `ImplicitCastExpr` with cast kind `CK_NullTo(Member)Pointer`. This patch assigns singleton pointer values representing null to these expressions.
For each pointee type, a singleton null `PointerValue` is created and stored in the `NullPointerVals` map of the `DataflowAnalysisContext` class. The pointee type is retrieved from the implicit cast expression, and used to initialise the `PointeeLoc` field of the `PointerValue`. The `PointeeLoc` created is not mapped to any `Value`, reflecting the absence of value indicated by null pointers.
Reviewed By: gribozavr2, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D128056
This patch introduces `buildAndSubstituteFlowCondition` - given a flow condition token, this function returns the expression of constraints defining the flow condition, with values substituted where specified.
As an example:
Say we have tokens `FC1`, `FC2`, `FC3`:
```
FlowConditionConstraints: {
FC1: C1,
FC2: C2,
FC3: (FC1 v FC2) ^ C3,
}
```
`buildAndSubstituteFlowCondition(FC3, /*Substitutions:*/{{C1 -> C1'}})`
returns a value corresponding to `(C1' v C2) ^ C3`.
Note:
This function returns the flow condition expressed directly as its constraints, which differs to how we currently represent the flow condition as a token bound to a set of constraints and dependencies. Making the representation consistent may be an option to consider in the future.
Depends On D128357
Reviewed By: gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128363
`equivalentBoolValues` compares equivalence between two booleans. The current implementation does not consider constraints imposed by flow conditions on the booleans and its subvalues.
Depends On D128520
Reviewed By: gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128521
To keep functionality of creating boolean expressions in a consistent location.
Depends On D128357
Reviewed By: gribozavr2, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D128519
Reland of D128467. This version replaces `return {};` with `return Result();`, since the former failed on GCC with `Result = void`.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D128533