that involve binding a reference to a pure rvalue temporary (e.g., not
a class temporary), by creating a new temporary and copying the result
there. Fixes PR6024.
llvm-svn: 108431
mostly in avoiding unnecessary work at compile time but also in producing more
sensible block orderings.
Move the destructor cleanups for local variables over to use lazy cleanups.
Eventually all cleanups will do this; for now we have some awkward code
duplication.
Tell IR generation just to never produce landing pads in -fno-exceptions.
This is a much more comprehensive solution to a problem which previously was
half-solved by checks in most cleanup-generation spots.
llvm-svn: 108270
t2.c:2:12: warning: use of logical && with constant operand; switch to bitwise &
or remove constant [-Wlogical-bitwise-confusion]
return x && 4;
^ ~
wording improvement suggestions are welcome.
llvm-svn: 108260
at -O0. The only change from the previous patch is that we don't try
to generate virtual method thunks for an available_externally
function.
llvm-svn: 108230
-O0, since we won't be using the definitions for anything anyway. For
lib/System/Path.o when built in Debug+Asserts mode, this leads to a 4%
improvement in compile time (and suppresses 440 function bodies).
<rdar://problem/7987644>
llvm-svn: 108156
CXXConstructExpr/CXXTemporaryObjectExpr/CXXNewExpr as
appropriate. Fixes PR7556, and provides a slide codegen improvement
when copy-initializing a POD class type from a value-initialized
temporary. Previously, we weren't eliding the copy.
llvm-svn: 107827
self-host. Hopefully these results hold up on different platforms.
I tried to keep the GNU ObjC runtime happy, but it's hard for me to test.
Reimplement how clang generates IR for exceptions. Instead of creating new
invoke destinations which sequentially chain to the previous destination,
push a more semantic representation of *why* we need the cleanup/catch/filter
behavior, then collect that information into a single landing pad upon request.
Also reorganizes how normal cleanups (i.e. cleanups triggered by non-exceptional
control flow) are generated, since it's actually fairly closely tied in with
the former. Remove the need to track which cleanup scope a block is associated
with.
Document a lot of previously poorly-understood (by me, at least) behavior.
The new framework implements the Horrible Hack (tm), which requires every
landing pad to have a catch-all so that inlining will work. Clang no longer
requires the Horrible Hack just to make exceptions flow correctly within
a function, however. The HH is an unfortunate requirement of LLVM's EH IR.
llvm-svn: 107631
ObjC pointers were easy enough (as far as the ABI is concerned, they're
just pointers to structs), but I had to invent a new mangling for block
pointers. This is particularly worrying with the Microsoft ABI, because
it is a vendor-specific ABI; extending it could come back to bite us
later when MS extends it on their own (and you know they will).
llvm-svn: 107572
Only actual functions get mangled correctly; I don't know how to fix it for
function pointers yet. Thanks to John McCall for the hint.
Also, mangle anonymous tag types. I don't have a suitable testcase yet; I have
a feeling that that's going to need support for static locals, and I haven't
figured out exactly how MSVC's scheme for mangling those works.
llvm-svn: 107561
aren't dropping all exception specifications on destructors, the
exception specifications on implicitly-declared destructors were
detected as being wrong (which they were).
Introduce logic to provide a proper exception-specification for
implicitly-declared destructors. This also fixes PR6972.
Note that the other implicitly-declared special member functions also
need to get exception-specifications. I'll deal with that in a
subsequent commit.
llvm-svn: 107385
r107173, "fix PR7519: after thrashing around and remembering how all this stuff"
r107216, "fix PR7523, which was caused by the ABI code calling ConvertType instead"
This includes a fix to make ConvertTypeForMem handle the "recursive" case, and call
it as such when lowering function types which have an indirect result.
llvm-svn: 107310
doesn't mangle array parameters right), but I think that should be fixed
in Sema (Doug, John, what do you think?).
Also, stub out the remaining mangleType() routines.
llvm-svn: 107264
would trigger an extra method call).
- While in the area, I also changed Clang to not emit an unnecessary load from
'x' in cases like 'y = (x = 1)'.
llvm-svn: 107210
load/store nonsense in the epilog. For example, for:
int foo(int X) {
int A[100];
return A[X];
}
we used to generate:
%arrayidx = getelementptr inbounds [100 x i32]* %A, i32 0, i64 %idxprom ; <i32*> [#uses=1]
%tmp1 = load i32* %arrayidx ; <i32> [#uses=1]
store i32 %tmp1, i32* %retval
%0 = load i32* %retval ; <i32> [#uses=1]
ret i32 %0
}
which codegen'd to this code:
_foo: ## @foo
## BB#0: ## %entry
subq $408, %rsp ## imm = 0x198
movl %edi, 400(%rsp)
movl 400(%rsp), %edi
movslq %edi, %rax
movl (%rsp,%rax,4), %edi
movl %edi, 404(%rsp)
movl 404(%rsp), %eax
addq $408, %rsp ## imm = 0x198
ret
Now we generate:
%arrayidx = getelementptr inbounds [100 x i32]* %A, i32 0, i64 %idxprom ; <i32*> [#uses=1]
%tmp1 = load i32* %arrayidx ; <i32> [#uses=1]
ret i32 %tmp1
}
and:
_foo: ## @foo
## BB#0: ## %entry
subq $408, %rsp ## imm = 0x198
movl %edi, 404(%rsp)
movl 404(%rsp), %edi
movslq %edi, %rax
movl (%rsp,%rax,4), %eax
addq $408, %rsp ## imm = 0x198
ret
This actually does matter, cutting out 2000 lines of IR from CGStmt.ll
for example.
Another interesting effect is that altivec.h functions which are dead
now get dce'd by the inliner. Hence all the changes to
builtins-ppc-altivec.c to ensure the calls aren't dead.
llvm-svn: 106970
objective-c++ class objects which have GC'able objc object
pointers and need to use ObjC's objc_memmove_collectable
API (radar 8070772).
llvm-svn: 106061
- Mangle qualifiers.
- Start mangling variables' types into the name. A variable declared with a
builtin type should now mangle properly.
llvm-svn: 105931
(but not their types; that's later).
NOTE: Right now, variables in the global namespace don't get mangled, even
though they're supposed to be. This is because the default mangler
implements the shouldMangleDeclName() method that tells clang not to mangle
them. This will be fixed in a later patch.
llvm-svn: 105805
isn't possible to compute.
This patch is mostly refactoring; the key change is the addition of the code
starting with the comment, "Check whether the function has a computable LLVM
signature." The solution here is essentially the same as the way the
vtable code handles such functions.
llvm-svn: 105151
variables should have that linkage. Otherwise, its static local
variables should have internal linkage. To avoid computing this excessively,
set a function's linkage before we emit code for it.
Previously we were assigning weak linkage to the static variables of
static inline functions in C++, with predictably terrible results. This
fixes that and also gives better linkage than 'weak' when merging is required.
llvm-svn: 104581
- I think this can be cleaned up, since this means we may notify the consumer about the vtable twice, but I didn't see an easy fix for this without more substantial refactoring.
- Doug, please review!
llvm-svn: 104577
This works around a crash where malloc reused the memory of an erased BB for a
new BB leaving old cleanup information pointing at the new block.
llvm-svn: 104472
in several important ways:
- VLAs of non-POD types are not permitted.
- VLAs cannot be used in conjunction with C++ templates.
These restrictions are intended to keep VLAs out of the parts of the
C++ type system where they cause the most trouble. Fixes PR5678 and
<rdar://problem/8013618>.
llvm-svn: 104443
temporaries. There are actually several interrelated fixes here:
- When converting an object to a base class, it's only an lvalue
cast when the original object was an lvalue and we aren't casting
pointer-to-derived to pointer-to-base. Previously, we were
misclassifying derived-to-base casts of class rvalues as lvalues,
causing various oddities (including problems with reference binding
not extending the lifetimes of some temporaries).
- Teach the code for emitting a reference binding how to look
through no-op casts and parentheses directly, since
Expr::IgnoreParenNoOpCasts is just plain wrong for this. Also, make
sure that we properly look through multiple levels of indirection
from the temporary object, but destroy the actual temporary object;
this fixes the reference-binding issue mentioned above.
- Teach Objective-C message sends to bind the result as a temporary
when needed. This is actually John's change, but it triggered the
reference-binding problem above, so it's included here. Now John
can actually test his return-slot improvements.
llvm-svn: 104434
not make copies non-POD arguments or arguments passed by reference:
just copy the pointers directly. This eliminates another source of the
dreaded memcpy-of-non-PODs. Fixes PR7188.
llvm-svn: 104327
recursively, e.g. so that members of anonymous unions inside anonymous structs
still get initialized. Also generate default constructor calls for anonymous
struct members when necessary.
llvm-svn: 104292
subobject. Previously, we could only properly bind to a base class
subobject while extending the lifetime of the complete object (of a
derived type); for non-static data member subobjects, we could memcpy
(!) the result and bind to that, which is rather broken.
Now, we pull apart the expression that we're binding to, to figure out
which subobject we're accessing, then construct the temporary object
(adding a destruction if needed) and, finally, dig out the subobject
we actually meant to access.
This fixes yet another instance where we were memcpy'ing rather than
doing the right thing. However, note the FIXME in references.cpp:
there's more work to be done for binding to subobjects, since the AST
is incorrectly modeling some member accesses in base classes as
lvalues when they are really rvalues.
llvm-svn: 104219
class type (that uses a return slot), pass the return slot to the
callee directly rather than allocating new storage and trying to copy
the object. This appears to have been the cause of the remaining two
Boost.Interprocess failures.
llvm-svn: 104215
initializer, don't fold paramters. Their initializers are just default
arguments which can be overridden. This fixes some spectacular regressions due
to more things making it into the constant folding.
llvm-svn: 103904
__cxa_guard_abort along the exceptional edge into (in effect) a nested
"try" that rethrows after aborting. Fixes PR7144 and the remaining
Boost.ProgramOptions failures, along with the regressions that r103880
caused.
The crucial difference between this and r103880 is that we now follow
LLVM's little dance with the llvm.eh.exception and llvm.eh.selector
calls, then use _Unwind_Resume_or_Rethrow to rethrow.
llvm-svn: 103892
__cxa_guard_abort along the exceptional edge into (in effect) a nested
"try" that rethrows after aborting. Fixes PR7144 and the remaining
Boost.ProgramOptions failures.
llvm-svn: 103880
return statements. We perform NRVO only when all of the return
statements in the function return the same variable. Fixes some link
failures in Boost.Interprocess (which is relying on NRVO), and
probably improves performance for some C++ applications.
llvm-svn: 103867
throw, it should use invoke when needed. The fixes the
Boost.Statechrt failures that motivated PR7132, but there are a few
side issues to tackle as well.
llvm-svn: 103803
methods for which the key function is guaranteed to be in another
translation unit. Unfortunately, this guarantee isn't the case when
dealing with shared libraries that fail to export these virtual method
definitions.
I'm reopening PR6747 so we can consider this again at a later point in
time.
llvm-svn: 103741
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
for, and switch), be careful to construct the full expressions as soon
as we perform template instantation, so we don't either forget to call
temporary destructors or destroy temporaries at the wrong time. This
is the template-instantiation analogue to r103187, during which I
hadn't realized that the issue would affect the handling of these
constructs differently inside and outside of templates.
Fixes a regression in Boost.Function.
llvm-svn: 103357
available_externally linkage, since they may not have been given a
strong definition in another translation unit. Without this patch, the
following test case fails to link with a GCC-compiled libstdc++:
#include <sstream>
int main() { std::basic_stringbuf<char> bs; }
Fixes the last problem with the Boost.IO library.
llvm-svn: 103208
if/switch/while/do/for statements. Previously, we would end up either:
(1) Forgetting to destroy temporaries created in the condition (!),
(2) Destroying the temporaries created in the condition *before*
converting the condition to a boolean value (or, in the case of a
switch statement, to an integral or enumeral value), or
(3) In a for statement, destroying the condition's temporaries at
the end of the increment expression (!).
We now destroy temporaries in conditions at the right times. This
required some tweaking of the Parse/Sema interaction, since the parser
was building full expressions too early in many places.
Fixes PR7067.
llvm-svn: 103187
function attributes like byval get applied to the function
definition. This fixes PR7058 and makes i386 llvm/clang bootstrap
pass all the same tests as x86-64 bootstrap for me (the llvmc
tests still fail in both).
llvm-svn: 103131
reference type, make sure that the initializer we build is the
of the appropriate type for the *reference*, not for the thing that it
refers to. Fixes PR7050.
llvm-svn: 103115
destructors, place the __cxa_atexit call after the __cxa_guard_release
call, mimicking GCC/LLVM-GCC behavior. Noticed while debugging
something related.
llvm-svn: 103088
implicitly-generated copy constructor. Previously, Sema would perform
some checking and instantiation to determine which copy constructors,
etc., would be called, then CodeGen would attempt to figure out which
copy constructor to call... but would get it wrong, or poke at an
uninstantiated default argument, or fail in other ways.
The new scheme is similar to what we now do for the implicit
copy-assignment operator, where Sema performs all of the semantic
analysis and builds specific ASTs that look similar to the ASTs we'd
get from explicitly writing the copy constructor, so that CodeGen need
only do a direct translation.
However, it's not quite that simple because one cannot explicit write
elementwise copy-construction of an array. So, I've extended
CXXBaseOrMemberInitializer to contain a list of indexing variables
used to copy-construct the elements. For example, if we have:
struct A { A(const A&); };
struct B {
A array[2][3];
};
then we generate an implicit copy assignment operator for B that looks
something like this:
B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { }
CodeGen will loop over the invented variables i0 and i1 to visit all
elements in the array, so that each element in the destination array
will be copy-constructed from the corresponding element in the source
array. Of course, if we're dealing with arrays of scalars or class
types with trivial copy-assignment operators, we just generate a
memcpy rather than a loop.
Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes
all of its regression tests.
Conspicuously missing from this patch is handling for the exceptional
case, where we need to destruct those objects that we have
constructed. I'll address that case separately.
llvm-svn: 103079
not just the inner expression. This is important if the expression has any
temporaries. Fixes PR 7028.
Basically a symptom of really tragic method names.
llvm-svn: 102998
assignment operators.
Previously, Sema provided type-checking and template instantiation for
copy assignment operators, then CodeGen would synthesize the actual
body of the copy constructor. Unfortunately, the two were not in sync,
and CodeGen might pick a copy-assignment operator that is different
from what Sema chose, leading to strange failures, e.g., link-time
failures when CodeGen called a copy-assignment operator that was not
instantiation, run-time failures when copy-assignment operators were
overloaded for const/non-const references and the wrong one was
picked, and run-time failures when by-value copy-assignment operators
did not have their arguments properly copy-initialized.
This implementation synthesizes the implicitly-defined copy assignment
operator bodies in Sema, so that the resulting ASTs encode exactly
what CodeGen needs to do; there is no longer any special code in
CodeGen to synthesize copy-assignment operators. The synthesis of the
body is relatively simple, and we generate one of three different
kinds of copy statements for each base or member:
- For a class subobject, call the appropriate copy-assignment
operator, after overload resolution has determined what that is.
- For an array of scalar types or an array of class types that have
trivial copy assignment operators, construct a call to
__builtin_memcpy.
- For an array of class types with non-trivial copy assignment
operators, synthesize a (possibly nested!) for loop whose inner
statement calls the copy constructor.
- For a scalar type, use built-in assignment.
This patch fixes at least a few tests cases in Boost.Spirit that were
failing because CodeGen picked the wrong copy-assignment operator
(leading to link-time failures), and I suspect a number of undiagnosed
problems will also go away with this change.
Some of the diagnostics we had previously have gotten worse with this
change, since we're going through generic code for our
type-checking. I will improve this in a subsequent patch.
llvm-svn: 102853
address of an overloaded function (or function template), perform that
resolution prior to determining the implicit conversion
sequence. This resolution is not part of the implicit conversion
sequence itself.
Previously, we would always consider this resolution to be a
function pointer decay, which was a lie: there might be an explicit &
in the expression, in which case decay should not occur. This caused
the CodeGen assertion in PR6973 (where we created a
pointer to a pointer to a function when we should have had a pointer
to a function), but it's likely that there are corner cases of
overload resolution where this would have failed.
Cleaned up the code involved in determining the type that will
produced afer resolving the overloaded function reference, and added
an assertion to make sure the result is correct. Fixes PR6973.
llvm-svn: 102650
T::template apply<U>), handling a few cases where we previously failed
and performing substitutions on such dependent names. Fixes a crash in
Boost.PropertyTree.
llvm-svn: 102490
keep track of whether we need to zero-initialize storage prior to
calling its constructor. Previously, we were only tracking this when
implicitly constructing the object (a CXXConstructExpr).
Fixes Boost's value-initialization tests, which means that the
Boost.Config library now passes all of its tests.
llvm-svn: 102461
temporary needs to be bound, bind the copy object. Otherwise, we won't
end up calling the destructor for the copy. Fixes Boost.Optional.
llvm-svn: 102290
T::apply <U>::type
Fixes PR6899, although I want to dig a little deeper into the FIXME
for dependent template names that refer to operators.
llvm-svn: 102167
in a throw expression. Use EmitAnyExprToMem to emit the throw expression,
which magically elides the final copy-constructor call (which raises a new
strict-compliance bug, but baby steps). Give __cxa_throw a destructor pointer
if the exception type has a non-trivial destructor.
llvm-svn: 102039
This mirror's Dan's patch for llvm-gcc in r97989, and
fixes the miscompilation in PR6525. There is some contention
over whether this is the right thing to do, but it is the
conservative answer and demonstrably fixes a miscompilation.
llvm-svn: 101877
Remove -faccess-control from -cc1; add -fno-access-control.
Make the driver pass -fno-access-control by default.
Update a bunch of tests to be correct under access control.
llvm-svn: 100880
__cxxabiv1::__fundamental_type_info in every translation
unit. Previously, we would perform name lookup for
__cxxabiv1::__fundamental_type_info at the end of IRGen for a each
translation unit, to determine whether it was present. If so, we we
produce type information for all of the fundamental types. However,
this name lookup causes PCH deserialization of a significant part of the
translation unit, which has a woeful impact on performance.
With this change, we now look at each record type after we've
generated its vtable to see if it is
__cxxabiv1::__fundamental_type_info. If so, we generate type info for
all of the fundamental types. This works because
__cxxabiv1::__fundamental_type_info should always have a key function
(typically the virtual destructor), that will be defined once in the
support library. The fundamental type information will end up there.
Fixes <rdar://problem/7840011>.
llvm-svn: 100772
assembly for the global "d7". We were previously testing for alignment
3, which seems to happen for some builders and not for others. I've
eliminated the alignment check and added a FIXME to unbreak the
buildbots.
llvm-svn: 100205
poor (and wrong) approximation of the actual rules governing when to
build a copy and when it can be elided.
The correct implementation is actually simpler than the
approximation. When we only enumerate constructors as part of
initialization (e.g., for direct initialization or when we're copying
from a class type or one of its derived classes), we don't create a
copy. When we enumerate all conversion functions, we do create a
copy. Before, we created some extra copies and missed some
others. The new test copy-initialization.cpp shows a case where we
missed creating a (required, non-elidable) copy as part of a
user-defined conversion, which resulted in a miscompile. This commit
also fixes PR6757, where the missing copy made us reject well-formed
code in the ternary operator.
This commit also cleans up our handling of copy elision in the case
where we create an extra copy of a temporary object, which became
necessary now that we produce the right copies. The code that seeks to
find the temporary object being copied has moved into
Expr::getTemporaryObject(); it used to have two different
not-quite-the-same implementations, one in Sema and one in CodeGen.
Note that we still do not attempt to perform the named return value
optimization, so we miss copy elisions for return values and throw
expressions.
llvm-svn: 100196
the existing (and already well-tested) linkage computation for types,
with minor tweaks for dynamic classes and (pointers to) incomplete
types. Fixes PR6597.
llvm-svn: 99968
through the bases and fields of the definition of the class in which
the constructor is declared, rather than some other declaration of
that class.
llvm-svn: 99661
EmitReferenceBindingToExpr() rather than assuming we have an
lvalue. This is just the lowest hanging fruit for PR6024, which still
requires a bit of work.
llvm-svn: 99447
implicit methods on explicit template instantiation definitions. As a
consequence, we should emit them at every use, even if we see a explicit
template instantiation declaration.
This is already the current behaviour, but it is good to test for that :-)
llvm-svn: 99443
CXXExprWithTemporaries.
Not emitting the expression as an aggregate might be the right thing to do,
but is orthogonal. Emitting it as an scalar expression will still try to
create a temporary for the incomplete type of the CXXExprWithTemporaries and
fail.
llvm-svn: 99134
shadowing it in the GlobalDeclMap. Eliminates the string-uniquing
requirement for mangled names, which should help C++ codegen times a little.
Forces us to do string lookups instead of pointer lookups, which might hurt
codegen times a little across the board. We'll see how it plays out.
Removing the string-uniquing requirement implicitly fixes any bugs like
PR6635 which arose from the fact that we had multiple uniquing tables for
different kinds of identifiers.
llvm-svn: 99012
iterations of this patch gave explicit template instantiation
link-once ODR linkage, which permitted the back end to eliminate
unused symbols. Weak ODR linkage still requires the symbols to be
generated.
llvm-svn: 98441