destructors, and conversion functions. The placeholders were used to
work around the fact that the parser and some of Sema really wanted
declarators to have simple identifiers; now, the code that deals with
declarators will use DeclarationNames.
llvm-svn: 59469
C++ constructors, destructors, and conversion functions now have a
FETokenInfo field that IdentifierResolver can access, so that these
special names are handled just like ordinary identifiers. A few other
Sema routines now use DeclarationNames instead of IdentifierInfo*'s.
To validate this design, this code also implements parsing and
semantic analysis for id-expressions that name conversion functions,
e.g.,
return operator bool();
The new parser action ActOnConversionFunctionExpr takes the result of
parsing "operator type-id" and turning it into an expression, using
the IdentifierResolver with the DeclarationName of the conversion
function. ActOnDeclarator pushes those conversion function names into
scope so that the IdentifierResolver can find them, of course.
llvm-svn: 59462
1. In the top level of ParseStatementOrDeclaration, don't eat a } if we
just parsed a statement if it list there. Also, don't even bother
emitting an error about a missing semicolon if the statement had a
bug (an rbrace is fine).
2. In do/while parsing, don't require a 'while' to be present if the do
body didn't parse.
This allows us to generate a clean diagnostic for this code:
t.c:1:22: error: expected expression
void foo (void) { do . while (0); }
^
Thanks to Neil for pointing this out.
llvm-svn: 59256
some more bullet-proofing/enhancements for tryEvaluate. This shouldn't
cause any behavior changes except for handling cases where we were
crashing before and being able to evaluate a few more cases in tryEvaluate.
This should settle the minor mess surrounding r59196.
llvm-svn: 59224
little rude; I figure it's cleaner to just back this out now so
it doesn't get forgotten or mixed up with other checkins.
The modification to isICE is simply wrong; I've added a test that the
change to isICE breaks.
I'm pretty sure the modification to tryEvaluate is also wrong.
At the very least, there's some serious miscommunication going on here,
as this is going in exactly the opposite direction of r59105. My
understanding is that tryEvaluate is not supposed to care about side
effects. That said, a lot of the clients to tryEvaluate are
expecting it to enforce a no-side-effects policy, so we probably need
another method that provides that guarantee.
llvm-svn: 59212
- Evaluation of , operator used bogus assumption that LHS could be
evaluated as an integral expression even though its type is
unspecified.
This change is making isICE very permissive of the LHS in non-evaluated
contexts because it is not clear what predicate we would use to reject
code here. The standard didn't offer me any guidance; opinions?
llvm-svn: 59196
functions for built-in operators, e.g., the builtin
bool operator==(int const*, int const*)
can be used for the expression "x1 == x2" given:
struct X {
operator int const*();
} x1, x2;
The scheme for handling these built-in operators is relatively simple:
for each candidate required by the standard, create a special kind of
candidate function for the built-in. If overload resolution picks the
built-in operator, we perform the appropriate conversions on the
arguments and then let the normal built-in operator take care of it.
There may be some optimization opportunity left: if we can reduce the
number of built-in operator overloads we generate, overload resolution
for these cases will go faster. However, one must be careful when
doing this: GCC generates too few operator overloads in our little
test program, and fails to compile it because none of the overloads it
generates match.
Note that we only support operator overload for non-member binary
operators at the moment. The other operators will follow.
As part of this change, ImplicitCastExpr can now be an lvalue.
llvm-svn: 59148
This pushes it a lot closer to being able to deal with most of the stuff
CodeGen's constant expression evaluator knows how to deal with. This
also fixes PR3003.
The test could possibly use some improvement, but this'll work for now.
Test 6 is inspired by PR3003; the other tests are mostly just designed
to exercise the new code. The reason for the funny structure of the
tests is that type fixing for arrays inside of structs is the only place
in Sema that calls tryEvaluate, at least for the moment.
llvm-svn: 59125