Move the register stackification and coloring passes to run very late, after
PEI, tail duplication, and most other passes. This means that all code emitted
and expanded by those passes is now exposed to these passes. This also
eliminates the need for prologue/epilogue code to be manually stackified,
which significantly simplifies the code.
This does require running LiveIntervals a second time. It's useful to think
of these late passes not as late optimization passes, but as a domain-specific
compression algorithm based on knowledge of liveness information. It's used to
compress the code after all conventional optimizations are complete, which is
why it uses LiveIntervals at a phase when actual optimization passes don't
typically need it.
Differential Revision: http://reviews.llvm.org/D20075
llvm-svn: 269012
This implements a very simple conservative transformation that doesn't
require more than linear code size growth. There's room for much more
optimization in this space.
llvm-svn: 262982
Summary:
Use the SP32 physical register as the base for FrameIndex
lowering. Update it and the __stack_pointer global var in the prolog and
epilog. Extend the mapping of virtual registers to wasm locals to
include the physical registers.
Rather than modify the target-independent PrologEpilogInserter (which
asserts that there are no virtual registers left) include a
slightly-modified copy for Wasm that does not have this assertion and
only clears the virtual registers if scavenging was needed (which of
course it isn't for wasm).
Differential Revision: http://reviews.llvm.org/D15344
llvm-svn: 255392
Reinteroduce the code for moving ARGUMENTS back to the top of the basic block.
While the ARGUMENTS physical register prevents sinking and scheduling from
moving them, it does not appear to be sufficient to prevent SelectionDAG from
moving them down in the initial schedule. This patch introduces a patch that
moves them back to the top immediately after SelectionDAG runs.
This is still hopefully a temporary solution. http://reviews.llvm.org/D14750 is
one alternative, though the review has not been favorable, and proposed
alternatives are longer-term and have other downsides.
This fixes the main outstanding -verify-machineinstrs failures, so it adds
-verify-machineinstrs to several tests.
Differential Revision: http://reviews.llvm.org/D15377
llvm-svn: 255125
This patch introduces a codegen-only instruction currently named br_unless,
which makes it convenient to implement ReverseBranchCondition and re-enable
the MachineBlockPlacement pass. Then in a late pass, it lowers br_unless
back into br_if.
Differential Revision: http://reviews.llvm.org/D14995
llvm-svn: 254826
Switch to MC for instruction printing.
This encompasses several changes which are all interconnected:
- Use the MC framework for printing almost all instructions.
- AsmStrings are now live.
- This introduces an indirection between LLVM vregs and WebAssembly registers,
and a new pass, WebAssemblyRegNumbering, for computing a basic the mapping.
This addresses some basic issues with argument registers and unused registers.
- The way ARGUMENT instructions are handled no longer generates redundant
get_local+set_local for every argument.
This also changes the assembly syntax somewhat; most notably, MC's printing
does not use sigils on label names, so those are no longer present, and
push/pop now have a sigil to keep them unambiguous.
The usage of set_local/get_local/$push/$pop will continue to evolve
significantly. This patch is just one step of a larger change.
llvm-svn: 252910
This encompasses several changes which are all interconnected:
- Use the MC framework for printing almost all instructions.
- AsmStrings are now live.
- This introduces an indirection between LLVM vregs and WebAssembly registers,
and a new pass, WebAssemblyRegNumbering, for computing a basic the mapping.
This addresses some basic issues with argument registers and unused registers.
- The way ARGUMENT instructions are handled no longer generates redundant
get_local+set_local for every argument.
This also changes the assembly syntax somewhat; most notably, MC's printing
use sigils on label names, so those are no longer present, and push/pop now
have a sigil to keep them unambiguous.
The usage of set_local/get_local/$push/$pop will continue to evolve
significantly. This patch is just one step of a larger change.
llvm-svn: 252858
This pass implements a simple algorithm for conversion from CFG to
wasm's structured control flow. It doesn't yet handle multiple-entry
loops; that will be added in a future patch.
It also adds initial support for switch statements.
Differential Revision: http://reviews.llvm.org/D12735
llvm-svn: 247818
This is just an initial checkin of an implementation of the Relooper algorithm, in preparation for WebAssembly codegen to utilize. It doesn't do anything yet by itself.
The Relooper algorithm takes an arbitrary control flow graph and generates structured control flow from that, utilizing a helper variable when necessary to handle irreducibility. The WebAssembly backend will be able to use this in order to generate an AST for its binary format.
Author: azakai
Reviewers: jfb, sunfish
Subscribers: jevinskie, arsenm, jroelofs, llvm-commits
Differential revision: http://reviews.llvm.org/D11691
llvm-svn: 245142
Summary:
Add a basic CodeGen bitcode test which (for now) only prints out the function name and nothing else. The current code merely implements the basic needed for the test run to not crash / assert. Getting to that point required:
- Basic InstPrinter.
- Basic AsmPrinter.
- DiagnosticInfoUnsupported (not strictly required, but nice to have, duplicated from AMDGPU/BPF's ISelLowering).
- Some SP and register setup in WebAssemblyTargetLowering.
- Basic LowerFormalArguments.
- GenInstrInfo.
- Placeholder LowerFormalArguments.
- Placeholder CanLowerReturn and LowerReturn.
- Basic DAGToDAGISel::Select, which requiresGenDAGISel.inc as well as GET_INSTRINFO_ENUM with GenInstrInfo.inc.
- Remove WebAssemblyFrameLowering::determineCalleeSaves and rely on default.
- Implement WebAssemblyFrameLowering::hasFP, same as AArch64's implementation.
Follow-up patches will implement a real AsmPrinter, which will require adding MI opcodes specific to WebAssembly.
Reviewers: sunfish
Subscribers: aemerson, jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D11369
llvm-svn: 242939
Summary:
This code is based on AArch64 for modern backend good practice, and NVPTX for
virtual ISA concerns.
Reviewers: sunfish
Subscribers: aemerson, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11070
llvm-svn: 241923