available when Clang is found within the LLVM tree. If enabled (the
default), Clang will be built as part of LLVM. If disabled, Clang will
be skipped... and can be built by configuring a separate object
directory just for Clang. This helps break up the monolithic
LLVM+Clang project that many Clang developers use, improving
build/load times.
llvm-svn: 135218
TargetAsmInfo, which in turn pulls in TargetRegisterInfo, etc. :-( There are
other cases of violations, but this is probably the worst.
This patch is but one small step towards fixing this. 500 more steps to go. :-(
llvm-svn: 135131
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
llvm-svn: 134949
and MCSubtargetInfo.
- Added methods to update subtarget features (used when targets automatically
detect subtarget features or switch modes).
- Teach X86Subtarget to update MCSubtargetInfo features bits since the
MCSubtargetInfo layer can be shared with other modules.
- These fixes .code 16 / .code 32 support since mode switch is updated in
MCSubtargetInfo so MC code emitter can do the right thing.
llvm-svn: 134884
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
CPU, and feature string. Parsing some asm directives can change
subtarget state (e.g. .code 16) and it must be reflected in other
modules (e.g. MCCodeEmitter). That is, the MCSubtargetInfo instance
must be shared.
llvm-svn: 134795
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
llvm-svn: 134127
character in std::string was causing failures for a few ObjC and Obj-C++ tests
when -flto was enabled. Revision 133999 resolved this issue. Thanks Jay!
rdar://9685235
PR10210
llvm-svn: 134017
This was causing compile-time failures for some of the Objc and Obj-C++
benchmarks. The specific errors were of the form: "ld: duplicate symbol …"
rdar://9660124
llvm-svn: 133955
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
llvm-svn: 133412
The LSDA is a bit difficult for the non-initiated to read. Even with comments,
it's not always clear what's going on. This wraps the ASM streamer in a class
that retains the LSDA and then emits a human-readable description of what's
going on in it.
So instead of having to make sense of:
Lexception1:
.byte 255
.byte 155
.byte 168
.space 1
.byte 3
.byte 26
Lset0 = Ltmp7-Leh_func_begin1
.long Lset0
Lset1 = Ltmp812-Ltmp7
.long Lset1
Lset2 = Ltmp913-Leh_func_begin1
.long Lset2
.byte 3
Lset3 = Ltmp812-Leh_func_begin1
.long Lset3
Lset4 = Leh_func_end1-Ltmp812
.long Lset4
.long 0
.byte 0
.byte 1
.byte 0
.byte 2
.byte 125
.long __ZTIi@GOTPCREL+4
.long __ZTIPKc@GOTPCREL+4
you can read this instead:
## Exception Handling Table: Lexception1
## @LPStart Encoding: omit
## @TType Encoding: indirect pcrel sdata4
## @TType Base: 40 bytes
## @CallSite Encoding: udata4
## @Action Table Size: 26 bytes
## Action 1:
## A throw between Ltmp7 and Ltmp812 jumps to Ltmp913 on an exception.
## For type(s): __ZTIi@GOTPCREL+4 __ZTIPKc@GOTPCREL+4
## Action 2:
## A throw between Ltmp812 and Leh_func_end1 does not have a landing pad.
llvm-svn: 133286
inconsistent with autoconf, which by default set BINUTILS_INCDIR to
empty and exclude gold from target list.
Based on a patch by Haitao Li!
llvm-svn: 131229
This change allows bugpoint to pinpoint the "opt" pass and bitcode
segment responsible for a crash caused by miscompilation. At least it
works well for me now, without having to create any custom execution
wrappers.
llvm-svn: 131186
for all symbol differences and can drop the old EmitPCRelSymbolValue
method.
This also make getExprForFDESymbol on ELF equal to the one on MachO, and it
can be made non-virtual.
llvm-svn: 130634
- As before, there is a minor semantic change here (evidenced by the test
change) for Darwin triples that have no version component. I debated changing
the default behavior of isOSVersionLT, but decided it made more sense for
triples to be explicit.
llvm-svn: 129805
Add handling for tracking the relocations on symbols and resolving them.
Keep track of the relocations even after they are resolved so that if
the RuntimeDyld client moves the object, it can update the address and any
relocations to that object will be updated.
For our trival object file load/run test harness (llvm-rtdyld), this enables
relocations between functions located in the same object module. It should
be trivially extendable to load multiple objects with mutual references.
As a simple example, the following now works (running on x86_64 Darwin 10.6):
$ cat t.c
int bar() {
return 65;
}
int main() {
return bar();
}
$ clang t.c -fno-asynchronous-unwind-tables -o t.o -c
$ otool -vt t.o
t.o:
(__TEXT,__text) section
_bar:
0000000000000000 pushq %rbp
0000000000000001 movq %rsp,%rbp
0000000000000004 movl $0x00000041,%eax
0000000000000009 popq %rbp
000000000000000a ret
000000000000000b nopl 0x00(%rax,%rax)
_main:
0000000000000010 pushq %rbp
0000000000000011 movq %rsp,%rbp
0000000000000014 subq $0x10,%rsp
0000000000000018 movl $0x00000000,0xfc(%rbp)
000000000000001f callq 0x00000024
0000000000000024 addq $0x10,%rsp
0000000000000028 popq %rbp
0000000000000029 ret
$ llvm-rtdyld t.o -debug-only=dyld ; echo $?
Function sym: '_bar' @ 0
Function sym: '_main' @ 16
Extracting function: _bar from [0, 15]
allocated to 0x100153000
Extracting function: _main from [16, 41]
allocated to 0x100154000
Relocation at '_main' + 16 from '_bar(Word1: 0x2d000000)
Resolving relocation at '_main' + 16 (0x100154010) from '_bar (0x100153000)(pcrel, type: 2, Size: 4).
loaded '_main' at: 0x100154000
65
$
llvm-svn: 129388
Teach 32-bit section loading to use the Memory Manager interface, just like
the 64-bit loading does. Tidy up a few other things here and there.
llvm-svn: 129138
Start teaching the runtime Dyld interface to use the memory manager API
for allocating space. Rather than mapping directly into the MachO object,
we extract the payload for each object and copy it into a dedicated buffer
allocated via the memory manager. For now, just do Segment64, so this works
on x86_64, but not yet on ARM.
llvm-svn: 128973
developers can see if their driver changed any cl::Option's. The
current implementation isn't perfect but handles most kinds of
options. This is nice to have when decomposing the stages of
compilation and moving between different drivers. It's also a good
sanity check when comparing results produced by different command line
invocations that are expected to produce the comparable results.
Note: This is not an attempt to prolong the life of cl::Option. On the
contrary, it's a placeholder for a feature that must exist when
cl::Option is replaced by a more appropriate framework. A new
framework needs: a central option registry, dynamic name lookup,
non-global containers of option values (e.g. per-module,
per-function), *and* the ability to print options values and their defaults at
any point during compilation.
llvm-svn: 128910
The JITMemory manager references LLVM IR constructs directly, while the
runtime Dyld works at a lower level and can handle objects which may not
originate from LLVM IR. Introduce a new layer for the memory manager to
handle the interface between them. For the MCJIT, this layer will be almost
entirely simply a call-through w/ translation between the IR objects and
symbol names.
llvm-svn: 128851
with the contents of CMAKE_C(XX)_FLAGS too, else `llvm-config
--c(xx)flags' doesn't tell the absolute truth.
This comes from PR9603 and is based on a patch by Ryuta Suzuki!
llvm-svn: 128727