Commit Graph

2 Commits

Author SHA1 Message Date
Wei Mi eec5ba9fae Fix the issue that ComputeValueKnownInPredecessors only handles the case when
phi is on lhs of a comparison op.

For the following testcase,
L1:

  %t0 = add i32 %m, 7
  %t3 = icmp eq i32* %t2, null
  br i1 %t3, label %L3, label %L2

L2:

  %t4 = load i32, i32* %t2, align 4
  br label %L3

L3:

  %t5 = phi i32 [ %t0, %L1 ], [ %t4, %L2 ]
  %t6 = icmp eq i32 %t0, %t5
  br i1 %t6, label %L4, label %L5

We know if we go through the path L1 --> L3, %t6 should always be true. However
currently, if the rhs of the eq comparison is phi, JumpThreading fails to
evaluate %t6 to true. And we know that Instcombine cannot guarantee always
canonicalizing phi to the left hand side of the comparison operation according
to the operand priority comparison mechanism in instcombine. The patch handles
the case when rhs of the comparison op is a phi.

Differential Revision: https://reviews.llvm.org/D46275

llvm-svn: 331266
2018-05-01 14:47:24 +00:00
Philip Reames bb11d62a5a [LazyValueInfo] Look through Phi nodes when trying to prove a predicate
If asked to prove a predicate about a value produced by a PHI node, LazyValueInfo was unable to do so even if the predicate was known to be true for each input to the PHI. This prevented JumpThreading from eliminating a provably redundant branch.

The problematic test case looks something like this:
ListNode *p = ...;
while (p != null) {
  if (!p) return;
  x = g->x; // unrelated
  p = p->next
}

The null check at the top of the loop is redundant since the value of 'p' is null checked on entry to the loop and before executing the backedge. This resulted in us a) executing an extra null check per iteration and b) not being able to LICM unrelated loads after the check since we couldn't prove they would execute or that their dereferenceability wasn't effected by the null check on the first iteration.

Differential Revision: http://reviews.llvm.org/D12383

llvm-svn: 246465
2015-08-31 18:31:48 +00:00