Commit Graph

12 Commits

Author SHA1 Message Date
Max Kazantsev 613af1f7ca [SCEV] Prove implications for SCEVUnknown Phis
This patch teaches SCEV how to prove implications for SCEVUnknown nodes that are Phis.
If we need to prove `Pred` for `LHS, RHS`, and `LHS` is a Phi with possible incoming values
`L1, L2, ..., LN`, then if we prove `Pred` for `(L1, RHS), (L2, RHS), ..., (LN, RHS)` then we can also
prove it for `(LHS, RHS)`. If both `LHS` and `RHS` are Phis from the same block, it is sufficient
to prove the predicate for values that come from the same predecessor block.

The typical case that it handles is that we sometimes need to prove that `Phi(Len, Len - 1) >= 0`
given that `Len > 0`. The new logic was added to `isImpliedViaOperations` and only uses it and
non-recursive reasoning to prove the facts we need, so it should not hurt compile time a lot.

Differential Revision: https://reviews.llvm.org/D44001
Reviewed By: anna

llvm-svn: 329150
2018-04-04 05:46:47 +00:00
Fedor Sergeev 194a407bda [New PM][IRCE] port of Inductive Range Check Elimination pass to the new pass manager
There are two nontrivial details here:
* Loop structure update interface is quite different with new pass manager,
  so the code to add new loops was factored out

* BranchProbabilityInfo is not a loop analysis, so it can not be just getResult'ed from
  within the loop pass. It cant even be queried through getCachedResult as LoopCanonicalization
  sequence (e.g. LoopSimplify) might invalidate BPI results.

  Complete solution for BPI will likely take some time to discuss and figure out,
  so for now this was partially solved by making BPI optional in IRCE
  (skipping a couple of profitability checks if it is absent).

Most of the IRCE tests got their corresponding new-pass-manager variant enabled.
Only two of them depend on BPI, both marked with TODO, to be turned on when BPI
starts being available for loop passes.

Reviewers: chandlerc, mkazantsev, sanjoy, asbirlea
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43795

llvm-svn: 327619
2018-03-15 11:01:19 +00:00
Max Kazantsev b299ade2c5 Re-enable "[SCEV] Make isLoopEntryGuardedByCond a bit smarter"
The failures happened because of assert which was overconfident about
SCEV's proving capabilities and is generally not valid.

Differential Revision: https://reviews.llvm.org/D42835

llvm-svn: 324473
2018-02-07 11:16:29 +00:00
Serguei Katkov 69246ca787 Revert [SCEV] Make isLoopEntryGuardedByCond a bit smarter
Revert rL324453 commit which causes buildbot failures.

Differential Revision: https://reviews.llvm.org/D42835

llvm-svn: 324462
2018-02-07 09:10:08 +00:00
Max Kazantsev dd5ee6f5d9 [SCEV] Make isLoopEntryGuardedByCond a bit smarter
Sometimes `isLoopEntryGuardedByCond` cannot prove predicate `a > b` directly.
But it is a common situation when `a >= b` is known from ranges and `a != b` is
known from a dominating condition. Thia patch teaches SCEV to sum these facts
together and prove strict comparison via non-strict one.

Differential Revision: https://reviews.llvm.org/D42835

llvm-svn: 324453
2018-02-07 07:56:26 +00:00
Sanjoy Das 2143447c73 [IRCE] Create llvm::Loop instances for cloned out loops
llvm-svn: 278618
2016-08-14 01:04:46 +00:00
Wei Mi a49559befb [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

The original commit triggered regressions in Polly tests. The regressions
exposed two problems which have been fixed in current version.

1. Polly will generate a new function based on the old one. To generate an
instruction for the new function, it builds SCEV for the old instruction,
applies some tranformation on the SCEV generated, then expands the transformed
SCEV and insert the expanded value into new function. Because SCEV expansion
may reuse value cached in ExprValueMap, the value in old function may be
inserted into new function, which is wrong.
   In SCEVExpander::expand, there is a logic to check the cached value to
be used should dominate the insertion point. However, for the above
case, the check always passes. That is because the insertion point is
in a new function, which is unreachable from the old function. However
for unreachable node, DominatorTreeBase::dominates thinks it will be
dominated by any other node.
   The fix is to simply add a check that the cached value to be used in
expansion should be in the same function as the insertion point instruction.

2. When the SCEV is of scConstant type, expanding it directly is cheaper than
reusing a normal value cached. Although in the cached value set in ExprValueMap,
there is a Constant type value, but it is not easy to find it out -- the cached
Value set is not sorted according to the potential cost. Existing reuse logic
in SCEVExpander::expand simply chooses the first legal element from the cached
value set.
   The fix is that when the SCEV is of scConstant type, don't try the reuse
logic. simply expand it.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259736
2016-02-04 01:27:38 +00:00
Wei Mi 97de385868 Revert r259662, which caused regressions on polly tests.
llvm-svn: 259675
2016-02-03 18:05:57 +00:00
Wei Mi ed133978a0 [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259662
2016-02-03 17:05:12 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Sanjoy Das e75ed92630 IRCE: generalize to handle loops with decreasing induction variables.
IRCE can now split the iteration space for loops like:

   for (i = n; i >= 0; i--)
     a[i + k] = 42; // bounds check on access

llvm-svn: 230618
2015-02-26 08:19:31 +00:00