As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This reverts commit r336419: use-after-free on CallGraph::FunctionMap elements
due to the use of a stale iterator in CGPassManager::runOnModule.
The iterator may be invalidated if a pass removes a function, ex.:
llvm::LegacyInlinerBase::inlineCalls
inlineCallsImpl
llvm::CallGraph::removeFunctionFromModule
llvm-svn: 337018
Previously we only iterated over functions reachable from the set of
external functions in the module. But since some of the passes under
this (notably the always-inliner and coroutine lowerer) are required for
correctness, they need to run over everything.
This just adds an extra layer of iteration over the CallGraph to keep
track of which functions we've already visited and get the next batch of
SCCs.
Should fix PR38029.
llvm-svn: 336419
removing fully-dead comdats without removing dead entries in comdats
with live members.
This factors the core logic out of the current inliner's internals to
a reusable utility and leverages that in both places. The factored out
code should also be (minorly) more efficient in cases where we have very
few dead functions or dead comdats to consider.
I've added a test case to cover this behavior of the always inliner.
This is the last significant bug in the new PM's always inliner I've
found (so far).
llvm-svn: 290557
whether functions are removed, and fix the new PM's always inliner to
actually pass this test.
Without this, the new PM's always inliner leaves all the functions
kicking around which won't work out very well given the semantics of
always inline.
Doing this really highlights how frustrating the current alwaysinline
semantic contract is though -- why can we put it on *external*
functions, etc?
Also I've added a number of tricky and interesting test cases for
removing functions with the always inliner. There is one remaining case
not handled -- fully removing comdats -- and I've left a FIXME about
this.
llvm-svn: 290457
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
After some discussions the preferred semantics of
the always_inline attribute is
inline always when the compiler can determine
that it it safe to do so.
llvm-svn: 206487
is set even when it contains a indirect branch.
The attribute overrules correctness concerns
like the escape of a local block address.
This is for rdar://16501761
llvm-svn: 206429
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
I really need to find a way to automate this, but I can't come up with a regex
that has no false positives while handling tricky cases like custom check
prefixes.
llvm-svn: 162097
a single missing character. Somehow, this had gone untested. I've added
tests for returns-twice logic specifically with the always-inliner that
would have caught this, and fixed the bug.
Thanks to Matt for the careful review and spotting this!!! =D
llvm-svn: 153832